Python']Python Data Driven framework for acceleration of Phase-Field simulations

被引:1
|
作者
Fetni, Seifallah [1 ]
Delahaye, Jocelyn [1 ]
Habraken, Anne Marie [1 ]
机构
[1] Univ Liege, UEE Res Unit, Liege, Belgium
关键词
!text type='Python']Python[!/text] development; Deep learning; Image generation and processing; LSTM; PCA;
D O I
10.1016/j.simpa.2023.100563
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The passage describes the development of a numerical framework in Python to create and process a large dataset for time-series prediction using Deep Learning algorithms. The dataset is generated by solving the Cahn-Hilliard equation for spinodal decomposition of a binary alloy and is labeled to train the algorithms. Prior to training, dimensionality reduction is performed using Auto-encoders and Principal Component Analysis. The framework identifies three distinct latent dimensions/spaces for the datasets. The primary dataset was generated by running up to 10,000 High-Fidelity Phase-Field simulations in parallel using High-Performance Computing (HPC). The framework is compatible with all major operating systems and has been thoroughly tested on Python 3.7 and later versions.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] pyEIA: A Python']Python-based framework for data analysis of electrochemical methods for immunoassays
    Vishart, Jonas Lynge
    Castillo-Leon, Jaime
    Svendsen, Winnie E.
    SOFTWAREX, 2021, 15
  • [32] Gsmodutils: a python']python based framework for test-driven genome scale metabolic model development
    Gilbert, James
    Pearcy, Nicole
    Norman, Rupert
    Millat, Thomas
    Winzer, Klaus
    King, John
    Hodgman, Charlie
    Minton, Nigel
    Twycross, Jamie
    BIOINFORMATICS, 2019, 35 (18) : 3397 - 3403
  • [33] Mocafe: a comprehensive Python']Python library for simulating cancer development with Phase Field Models
    Pradelli, Franco
    Minervini, Giovanni
    Tosatto, Silvio C. E.
    BIOINFORMATICS, 2022, 38 (18) : 4440 - 4441
  • [34] A Python']Python Toolbox for Data-Driven Aerodynamic Modeling Using Sparse Gaussian Processes
    Valayer, Hugo
    Bartoli, Nathalie
    Castano-Aguirre, Mauricio
    Lafage, Remi
    Lefebvre, Thierry
    Lopez-Lopera, Andres F.
    Mouton, Sylvain
    AEROSPACE, 2024, 11 (04)
  • [35] PyHAPT: A Python']Python-based Human Activity Pose Tracking data processing framework
    Quan, Hao
    Bonarini, Andrea
    SOFTWARE IMPACTS, 2022, 13
  • [36] dispel4py: A Python']Python framework for data-intensive scientific computing
    Filguiera, Rosa
    Krause, Amrey
    Atkinson, Malcolm
    Klampanos, Iraklis
    Moreno, Alexander
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2017, 31 (04): : 316 - 334
  • [37] Pyteomics-a Python']Python Framework for Exploratory Data Analysis and Rapid Software Prototyping in Proteomics
    Goloborodko, Anton A.
    Levitsky, Lev I.
    Ivanov, Mark V.
    Gorshkov, Mikhail V.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2013, 24 (02) : 301 - 304
  • [38] Accuracy Testing of Data Classification using Tensor Flow a Python']Python Framework in ANN Designing
    Chauhan, Neeraj
    Bhatt, Ashutosh Kr.
    Dwivedi, Rakesh Kr.
    Belwal, Rajendra
    PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON SYSTEM MODELING & ADVANCEMENT IN RESEARCH TRENDS (SMART), 2018, : 44 - 48
  • [39] dispe14py: A Python']Python Framework for Data-Intensive Scientific Computing
    Filguiera, Rosa
    Klampanos, Iraklis
    Krause, Amrey
    David, Mario
    Moreno, Alexander
    Atkinson, Malcolm
    2014 INTERNATIONAL WORKSHOP ON DATA-INTENSIVE SCALABLE COMPUTING SYSTEMS (DISCS), 2014, : 9 - 16
  • [40] Python']Python script for homogeneous aqueous chemical reaction analysis and associated data related to radiolysis simulations
    Doyle, Peter
    Bartels, David
    DATA IN BRIEF, 2020, 31