Python']Python Data Driven framework for acceleration of Phase-Field simulations

被引:1
|
作者
Fetni, Seifallah [1 ]
Delahaye, Jocelyn [1 ]
Habraken, Anne Marie [1 ]
机构
[1] Univ Liege, UEE Res Unit, Liege, Belgium
关键词
!text type='Python']Python[!/text] development; Deep learning; Image generation and processing; LSTM; PCA;
D O I
10.1016/j.simpa.2023.100563
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The passage describes the development of a numerical framework in Python to create and process a large dataset for time-series prediction using Deep Learning algorithms. The dataset is generated by solving the Cahn-Hilliard equation for spinodal decomposition of a binary alloy and is labeled to train the algorithms. Prior to training, dimensionality reduction is performed using Auto-encoders and Principal Component Analysis. The framework identifies three distinct latent dimensions/spaces for the datasets. The primary dataset was generated by running up to 10,000 High-Fidelity Phase-Field simulations in parallel using High-Performance Computing (HPC). The framework is compatible with all major operating systems and has been thoroughly tested on Python 3.7 and later versions.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] MADAS: a Python']Python framework for assessing similarity in materials-science data
    Kuban, Martin
    Rigamonti, Santiago
    Draxl, Claudia
    DIGITAL DISCOVERY, 2024, 3 (12): : 2448 - 2457
  • [22] nbodykit: A Python']Python Toolkit for Cosmology Simulations and Data Analysis on Parallel HPC Systems
    Hand, Nick
    Feng, Yu
    PROCEEDINGS OF PYHPC'17: 7TH WORKSHOP ON PYTHON FOR HIGH-PERFORMANCE AND SCIENTIFIC COMPUTING, 2017,
  • [23] Using web2py Python']Python framework for creating data-driven web applications in the academic library
    Miles, Mathew
    LIBRARY HI TECH, 2016, 34 (01) : 164 - 171
  • [24] Large deformation framework for phase-field simulations at the mesoscale
    Borukhovich, Efim
    Engels, Philipp S.
    Mosler, Joern
    Shchyglo, Oleg
    Steinbach, Ingo
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 108 : 367 - 373
  • [25] Phasepy: A Python']Python based framework for fluid phase equilibria and interfacial properties computation
    Chaparro, Gustavo
    Mejia, Andres
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2020, 41 (29) : 2504 - 2526
  • [26] MultiPsi: A python']python-driven MCSCF program for photochemistry and spectroscopy simulations on modern HPC environments
    Delcey, Mickael G.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2023, 13 (06)
  • [27] HTSeq-a Python']Python framework to work with high-throughput sequencing data
    Anders, Simon
    Pyl, Paul Theodor
    Huber, Wolfgang
    BIOINFORMATICS, 2015, 31 (02) : 166 - 169
  • [28] ScopeSim: A flexible general purpose astronomical instrument data simulation framework in Python']Python
    Leschinski, K.
    Buddelmeijer, H.
    Czoske, O.
    Verdugo, M.
    Verdoes-Kleijn, G.
    Zeilinger, W.
    SOFTWARE AND CYBERINFRASTRUCTURE FOR ASTRONOMY VI, 2020, 11452
  • [29] PyBrook-A Python']Python framework for processing and visualising real-time data
    Rokita, Michal
    Modrzejewski, Mateusz
    Rokita, Przemyslaw
    SOFTWAREX, 2025, 30
  • [30] PythoMS: A Python']Python Framework To Simplify and Assist in the Processing and Interpretation of Mass Spectrometric Data
    Yunker, Lars P. E.
    Donnecke, Sofia
    Ting, Michelle
    Yeung, Darien
    McIndoe, J. Scott
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (04) : 1295 - 1300