An Adaptative Savitzky-Golay Kernel for Laplacian Estimation in Magnetic Resonance Electrical Property Tomography

被引:2
作者
He, Zhongzheng [1 ]
Chen, Bailiang [1 ]
Lefebvre, Pauline M. [1 ]
Odille, Freddy [1 ]
机构
[1] Univ Lorraine, INSERM, IADI U1254, Nancy, France
来源
2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC | 2023年
关键词
CONDUCTIVITY MEASUREMENT;
D O I
10.1109/EMBC40787.2023.10341200
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Magnetic Resonance electrical property tomography (MR-EPT) is a non-invasive imaging modality that reconstructs the living biological tissue's conductivity sigma and permittivity epsilon(r) using spatial derivatives of the measured RF field, also termed B-1 data, in a magnetic resonance imaging system. The spatial derivative operator, particularly the Laplacian, amplifies the noise in the reconstructed electrical property (EP) maps, hence decreasing accuracy and increasing boundary artifacts. We propose a novel adaptative convolution kernel for generating numerical derivatives based on 3D Savitzky-Golay (SG) filters and local segmentation in a magnitude image. In comparison to typical SG kernel, the proposed kernel allows arbitrary shapes and sizes to vary with local tissue. It provides an automatic trade-off between noise and resolution, thereby significantly enhancing reconstruction accuracy and eliminating boundary artifacts.
引用
收藏
页数:4
相关论文
共 17 条
  • [1] [Anonymous], 2016, THEORETICAL INVESTIG, DOI DOI 10.1109/IGARSS.2016.7729081
  • [2] Arduino A., 2022, P 31 ANN M INT SOC M
  • [3] In vivo electric conductivity of cervical cancer patients based on B1+ maps at 3T MRI
    Balidemaj, E.
    de Boer, P.
    van Lier, A. L. H. M. W.
    Remis, R. F.
    Stalpers, L. J. A.
    Westerveld, G. H.
    Nederveen, A. J.
    van den Berg, C. A. T.
    Crezee, J.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (04) : 1596 - 1607
  • [4] Blanchet G., 2012, Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2012), P1065, DOI 10.1109/ICASSP.2012.6288070
  • [5] Dizhong Zhu, 2020, Computer Vision - ECCV 2020 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12367), P530, DOI 10.1007/978-3-030-58542-6_32
  • [6] Gradient-based electrical conductivity imaging using MR phase
    Gurler, Necip
    Ider, Yusuf Ziya
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (01) : 137 - 150
  • [7] Mapping electric bulk conductivity in the human heart
    Katscher, Ulrich
    Weiss, Steffen
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (03) : 1500 - 1506
  • [8] Electric properties tomography: Biochemical, physical and technical background, evaluation and clinical applications
    Katscher, Ulrich
    van den Berg, Cornelius A. T.
    [J]. NMR IN BIOMEDICINE, 2017, 30 (08)
  • [9] In vivo electrical conductivity measurement of muscle, cartilage, and peripheral nerve around knee joint using MR-electrical properties tomography
    Lee, Ji Hyun
    Yoon, Young Cheol
    Kim, Hyun Su
    Lee, Jiyeong
    Kim, Eunju
    Findeklee, Christian
    Katscher, Ulrich
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] Tissue Electrical Property Mapping From Zero Echo-Time Magnetic Resonance Imaging
    Lee, Seung-Kyun
    Bulumulla, Selaka
    Wiesinger, Florian
    Sacolick, Laura
    Sun, Wei
    Hancu, Ileana
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (02) : 541 - 550