Maximal matroids in weak order posets

被引:0
|
作者
Jackson, Bill [1 ]
Tanigawa, Shin-ichi [2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
[2] Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
基金
英国工程与自然科学研究理事会;
关键词
Matroid on a graph; Matroid weak order; Unique maximal matroid; Matroid erection; Rank function; Submodularity; Weakly saturated sequence; Combinatorial rigidity; RIGIDITY; HYPERGRAPHS; GRAPH;
D O I
10.1016/j.jctb.2023.10.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a family of subsets of a finite set E. A matroid on E is called an X-matroid if each set in X is a circuit. We develop techniques for determining when there exists a unique maximal X-matroid in the weak order poset of all X-matroids on E and formulate a conjecture which would characterise the rank function of this unique maximal matroid when it exists. The conjecture suggests a new type of matroid rank function which extends the concept of weakly saturated sequences from extremal graph theory. We verify the conjecture for various families X and show that, if true, the conjecture could have important applications in such areas as combinatorial rigidity and low rank matrix completion.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:20 / 46
页数:27
相关论文
共 50 条
  • [1] On chains of matroids in the weak order
    Lemos, Manoel
    Silva, Maria Isabelle
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 50 : 152 - 158
  • [2] The Weak Order on Weyl Posets
    Gay, Joel
    Pilaud, Vincent
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2020, 72 (04): : 867 - 899
  • [3] Chains in weak order posets associated to involutions
    Can, Mahir Bilen
    Joyce, Michael
    Wyser, Benjamin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 137 : 207 - 225
  • [5] From the weak Bruhat order to crystal posets
    Patricia Hersh
    Cristian Lenart
    Mathematische Zeitschrift, 2017, 286 : 1435 - 1464
  • [6] From the weak Bruhat order to crystal posets
    Hersh, Patricia
    Lenart, Cristian
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (3-4) : 1435 - 1464
  • [7] On geometric posets and partial matroids
    Branimir Šešelja
    Anna Slivková
    Andreja Tepavčević
    Algebra universalis, 2020, 81
  • [8] On geometric posets and partial matroids
    Seselja, Branimir
    Slivkova, Anna
    Tepavcevic, Andreja
    ALGEBRA UNIVERSALIS, 2020, 81 (03)
  • [9] Posets and Closure Operators Relative to Matroids
    Mao, Hua
    Liu, Sanyang
    MATEMATIKA, 2012, 28 (01) : 77 - 85
  • [10] Topological Posets and Tropical Phased Matroids
    Alvarez, Ulysses
    Geoghegan, Ross
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 72 (03) : 1199 - 1231