Physics guided neural network: Remaining useful life prediction of rolling bearings using long short-term memory network through dynamic weighting of degradation process

被引:11
作者
Lu, Wenjian [1 ]
Wang, Yu [1 ]
Zhang, Mingquan [1 ]
Gu, Junwei [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
关键词
Physics guided LSTM (PGLSTM); Remaining useful life (RUL); Physical consistency; Rolling bearings;
D O I
10.1016/j.engappai.2023.107350
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bearing is a common rotating component, the health status of bearing affects the operation and maintenance of equipment. Thus, the prediction of bearing remaining useful life is of great significance. The remaining useful life prediction based on neural network has black box property, which makes the prediction result may be contrary to the actual physical law. In this paper, a physics guided long short-term memory (LSTM) network is proposed based on the change trend of the time-frequency domain feature indicators of bearings in the process of degradation. Specifically, indexes such as monotonicity are used to select feature indicators that are highly trendy in the process of bearings degradation. On this basis, a regularization term based on the consistent variation of the feature indicators and the remaining useful life (RUL) in the process of bearing degradation is constructed to make the result of the network more consistent with the actual physical law. Meanwhile, the variation of feature indicators is used as dynamic weight to enhance the potential physical consistency. The experimental comparison results show that the prediction results of the network are more accurate and consistent with the actual physical laws with the guidance of physical prior knowledge.
引用
收藏
页数:15
相关论文
共 29 条
  • [1] Temporal convolution long short-term memory network with multiple attention for remaining useful life prediction of rolling bearings
    Zhang, Jiashuo
    He, Deqiang
    Wu, Jinxin
    Jin, Zhenzhen
    Xiang, Weibin
    Shan, Sheng
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [2] Battery Remaining Useful Life Prediction Supported by Long Short-Term Memory Neural Network
    Marri, Iacopo
    Petkovski, Emil
    Cristaldi, Loredana
    Faifer, Marco
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [3] Long-term temporal attention neural network with adaptive stage division for remaining useful life prediction of rolling bearings
    Gao, Pengjie
    Wang, Junliang
    Shi, Ziqi
    Ming, Weiwei
    Chen, Ming
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 251
  • [4] Remaining useful life prediction of rolling bearings based on Bayesian neural network and uncertainty quantification
    Jiang, Guang-Jun
    Yang, Jin-Sen
    Cheng, Tian-Cai
    Sun, Hong-Hua
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2023, 39 (05) : 1756 - 1774
  • [5] Remaining Useful Life Estimation Using Long Short-Term Memory Neural Networks and Deep Fusion
    Zhang, Yang
    Hutchinson, Paul
    Lieven, Nicholas A. J.
    Nunez-Yanez, Jose
    IEEE ACCESS, 2020, 8 : 19033 - 19045
  • [6] Multi-graph attention fusion graph neural network for remaining useful life prediction of rolling bearings
    Xiao, Yongchang
    Cui, Lingli
    Liu, Dongdong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (10)
  • [7] A dual-stream temporal convolutional network for remaining useful life prediction of rolling bearings
    Zhang, Yazhou
    Zhao, Xiaoqiang
    Xu, Rongrong
    Peng, Zhenrui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [8] Remaining useful life prediction of rolling bearings based on time convolutional network and transformer in parallel
    Tang, Youfu
    Liu, Ruifeng
    Li, Chunhui
    Lei, Na
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [9] Temporal multi-resolution hypergraph attention network for remaining useful life prediction of rolling bearings
    Wu, Jinxin
    He, Deqiang
    Li, Jiayi
    Miao, Jian
    Li, Xianwang
    Li, Hongwei
    Shan, Sheng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 247
  • [10] Dual-Attention-Based Multiscale Convolutional Neural Network With Stage Division for Remaining Useful Life Prediction of Rolling Bearings
    Jiang, Fei
    Ding, Kang
    He, Guolin
    Lin, Huibin
    Chen, Zhuyun
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71