Full-Decentralized Federated Learning-Based Edge Computing Peer Offloading Towards Industry 5.0

被引:1
作者
Chi, Hao Ran [1 ,2 ]
Radwan, Ayman [1 ,2 ]
机构
[1] Inst Telecomunicacoes, Aveiro, Portugal
[2] Univ Aveiro, Aveiro, Portugal
来源
2023 IEEE 21ST INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, INDIN | 2023年
关键词
edge computing; peer offloading; decentralization;
D O I
10.1109/INDIN51400.2023.10218137
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper gives a generic architecture and system modeling for full-decentralized on-demand edge computing-based peer offloading. Compared with the conventional centralized peer offloading strategies, the proposed full-decentralized peer offloading, based on federated learning, physically decentralizes peer offloading algorithm into edge computing, fully eliminating the rely on centralized servers (e.g., cloud). Meanwhile, compared with the other previous decentralized offloading schemes (blockchain-based, game theory-based, etc.), edge computing servers in this paper does not require global information to be shared, when they reach consensus of optimal peer offloading. In particular, the adjacent edge computing servers only share property-sensitive data (for the service providers of the edge computing servers) among each other, relying on which the whole edge computing network can reach global optimal peer offloading. In this paper, we consider energy efficiency as a use case to analyze the feasibility and efficiency of the proposed full-decentralized peer offloading architecture.
引用
收藏
页数:6
相关论文
共 13 条
[1]  
Chen L, 2017, GLOBECOM 2017 2017 I, P1, DOI [10.1109/GLOCOM.2017.8255052, DOI 10.1109/GLOCOM.2017.8255052]
[2]   Guest Editorial: Next-Generation Network Automation for Industrial Internet-of-Things in Industry 5.0 [J].
Chi, Hao Ran ;
Radwan, Ayman ;
Huang, Nen-Fu ;
Tsang, Kim Fung .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) :2062-2064
[3]   A Survey of Network Automation for Industrial Internet-of-Things Toward Industry 5.0 [J].
Chi, Hao Ran ;
Wu, Chung Kit ;
Huang, Nen-Fu ;
Tsang, Kim-Fung ;
Radwan, Ayman .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) :2065-2077
[4]   Fully-Decentralized Fairness-Aware Federated MEC Small-Cell Peer-Offloading for Enterprise Management Networks [J].
Chi, Hao Ran ;
Radwan, Ayman .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (01) :644-652
[5]   Complex Network Analysis for Ultra-Large-Scale MEC Small-Cell Based Peer-Offloading [J].
Chi, Hao Ran ;
Fatima Domingues, M. ;
Radwan, Ayman .
2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
[6]  
Kavyashree S, 2022, DAT INT COGN INF P I, P567
[7]   Stochastic learning for opportunistic peer-to-peer computation offloading in IoT edge computing [J].
Mu, Siqi ;
Shen, Yanfei .
CHINA COMMUNICATIONS, 2022, 19 (07) :239-256
[8]   Intelligent Edge Computing in Internet of Vehicles: A Joint Computation Offloading and Caching Solution [J].
Ning, Zhaolong ;
Zhang, Kaiyuan ;
Wang, Xiaojie ;
Guo, Lei ;
Hu, Xiping ;
Huang, Jun ;
Hu, Bin ;
Kwok, Ricky Y. K. .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (04) :2212-2225
[9]   Secure Task Offloading in Blockchain-Enabled Mobile Edge Computing With Deep Reinforcement Learning [J].
Samy, Ahmed ;
Elgendy, Ibrahim A. ;
Yu, Haining ;
Zhang, Weizhe ;
Zhang, Hongli .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04) :4872-4887
[10]   MEC Resource Offloading for QoE-Aware HAS Video Streaming [J].
Taha, Abd-Elhamid M. ;
Abu Ali, Najah ;
Chi, Hao Ran ;
Radwan, Ayman .
IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,