Pore structure characteristics and organic carbon distribution of soil aggregates in alpine ecosystems in the Qinghai Lake basin on the Qinghai-Tibet Plateau

被引:11
|
作者
Wang, Rui-Zhe
Hu, Xia [1 ]
机构
[1] Beijing Normal Univ, Fac Geog Sci, Sch Nat Resources, 19 Xinjiekouwai St, Beijing 100875, Peoples R China
基金
美国国家科学基金会;
关键词
Alpine ecosystem; Soil aggregate; Soil pore; Soil organic carbon; LAND-USE; MATTER; DECOMPOSITION; COMMUNITIES; MANAGEMENT; TEMPERATE; GRASSLAND; STABILITY; INDICATOR; BACTERIAL;
D O I
10.1016/j.catena.2023.107359
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Soils in alpine ecosystems serve as important carbon sinks. Soil aggregates provide physical protection to soil organic carbon (SOC) and pore networks of them can greatly influence SOC sequestration. However, previous studies mainly focused on SOC dynamics at ecosystem or regional scale in cold alpine regions. The lack of quantification of alpine soil aggregate pore structure limits our understanding of SOC sequestration mechanisms of alpine soil. In this study, three typical alpine ecosystems in the Qinghai Lake basin of Qinghai-Tibet Plateau (QTP) were selected: Kobresia pygmaea meadow (KPM), Potentilla fruticosa shrubland (PFS), and Achnatherum splendens steppe (ASS). Soil pore structure, SOC and their relationships in aggregates were examined through sieving procedure and X-ray computed tomography (CT) scanning. The results showed that the mass proportion of small macroaggregates (SMA, 0.25-2 mm) was highest and they accounted for 36-51% of all aggregate fractions in the above three alpine ecosystems. The pores of soil aggregate were found to be dominated by micropores (<30 mu m), which accounted for over 90% of the pore numbers. Aggregates of the ASS ecosystem had highest mean pore volume (7.761 x 10(3) mu m(3) in average) while soil aggregates of the KPM ecosystem had the highest pore number density (4.137 x 10(-5) no. mu m(-3) in average). The highest total organic carbon (TOC) content was mostly observed in the mA (microaggregates, 0.053-0.25 mm) fractions in the three ecosystems. Particulate organic carbon (POC) content was higher than mineral-associated organic carbon (MAOC) content of aggregates. Pores of < 15 mu m served as indirect indicators for SOC protection in soil aggregates. Pores of 15-30 mu m in aggregates might provide voids for SOC decomposition. TOC and MAOC content were positively correlated with pore surface area density while POC content was positively correlated with pore equivalent diameter and mean volume of aggregates. SOC was mainly affected by soil water content (SWC) in KPM and PFS ecosystems while it was mainly affected by soil particle compositions in the ASS ecosystems. Our results revealed the structural characteristics of aggregates of alpine soil and their relationships with the carbon storage function, which are helpful to understand the micro-scale mechanism of carbon sink of alpine soil.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Response of the Organic Carbon Fractions and Stability of Soil to Alpine Marsh Degradation in Zoige, East Qinghai-Tibet Plateau
    Yulin Pu
    Chun Ye
    Shirong Zhang
    Guiyin Wang
    Sijia Hu
    Xiaoxun Xu
    Shuang Xiang
    Ting Li
    Yongxia Jia
    Journal of Soil Science and Plant Nutrition, 2020, 20 : 2145 - 2155
  • [32] Effect of warming on the carbon flux of the alpine wetland on the Qinghai-Tibet Plateau
    Yasin, Adile
    Niu, Bin
    Chen, Zhengan
    Hu, Yilun
    Yang, Xiaoqin
    Li, Yue
    Zhang, Gengxin
    Li, Fengjie
    Hou, Weiguo
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [33] The addition of organic carbon and nitrogen accelerates the restoration of soil system of degraded alpine grassland in Qinghai-Tibet Plateau
    Li, Jinsheng
    Shao, Xinqing
    Huang, Ding
    Shang, Jianying
    Liu, Kesi
    Zhang, Qian
    Yang, Xiaomeng
    Li, Hui
    He, Yixuan
    ECOLOGICAL ENGINEERING, 2020, 158
  • [34] Vertical distribution of Pu in forest soil in Qinghai-Tibet Plateau
    Guan, Yongjin
    Zhang, Peijun
    Huang, Chunping
    Wang, Deyu
    Wang, Xianggao
    Li, Longqing
    Han, Xiaoxiao
    Liu, Zhiyong
    JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2021, 229
  • [35] Hydrothermal processes of Alpine Tundra Lakes, Beiluhe Basin, Qinghai-Tibet Plateau
    Lin, Zhanju
    Niu, Fujun
    Liu, Hua
    Lu, Jiahao
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2011, 65 (03) : 446 - 455
  • [36] Spatiotemporal Distribution Characteristics of Actual Evapotranspiration in the Qinghai-Tibet Plateau
    Huang, Shan
    Xiao, Tiangui
    Jia, La
    Han, Lin
    ATMOSPHERE, 2023, 14 (09)
  • [37] Response of Soil Carbon and Nitrogen Storage to Nitrogen Addition in Alpine Meadow of Qinghai-Tibet Plateau
    Xiang, Xuemei
    De, Kejia
    Lin, Weishan
    Feng, Tingxu
    Li, Fei
    Wei, Xijie
    Wang, Wei
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2025, 34 (01): : 359 - 368
  • [38] Distribution Characteristics of Groundwater Table in the Nagqu River Basin, Central Qinghai-Tibet Plateau
    Xia, Kebin
    Weng, Baisha
    Gong, Xiaoyan
    Xiao, Shangbin
    Bi, Wuxia
    Li, Meng
    Yan, Denghua
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2023, 32 (05): : 4851 - 4864
  • [39] Effect of organic amendments on soil structure, microbial community and water transport in the Qinghai Lake watershed, North-Eastern Qinghai-Tibet Plateau
    Hu, Xia
    Pan, Peng-Yu
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2024, 70 (01) : 1 - 17
  • [40] Characteristics of isotope in precipitation, river water and lake water in the Manasarovar basin of Qinghai-Tibet Plateau
    Yao, Zhijun
    Liu, Jian
    Huang, He-Qing
    Song, Xianfang
    Dong, Xiaohui
    Liu, Xin
    ENVIRONMENTAL GEOLOGY, 2009, 57 (03): : 551 - 556