Vacuum-Deposited Wide-Bandgap Perovskite for All-Perovskite Tandem Solar Cells

被引:39
作者
Chiang, Yu-Hsien [1 ]
Frohna, Kyle [1 ]
Salway, Hayden [2 ]
Abfalterer, Anna [1 ]
Pan, Linfeng [1 ]
Roose, Bart [2 ]
Anaya, Miguel [2 ]
Stranks, Samuel D. [1 ,2 ]
机构
[1] Univ Cambridge, Dept Phys, Cavendish Lab, Cambridge CB3 0HE, England
[2] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB3 0AS, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
EFFICIENCY; TRIHALIDE;
D O I
10.1021/acsenergylett.3c00564
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-perovskite tandemsolar cells beckon as lower costalternativesto conventional single-junction cells. Solution processing has enabledrapid optimization of perovskite solar technologies, but new depositionroutes will enable modularity and scalability, facilitating technologyadoption. Here, we utilize 4-source vacuum deposition to deposit FA(0.7)Cs(0.3)Pb-(I x Br1-x )(3) perovskite, wherethe bandgap is changed through fine control over the halide content.We show how using MeO-2PACz as a hole-transporting material and passivatingthe perovskite with ethylenediammonium diiodide reduces nonradiativelosses, resulting in efficiencies of 17.8% in solar cells based onvacuum-deposited perovskites with a bandgap of 1.76 eV. By similarlypassivating a narrow-bandgap FA(0.75)Cs(0.25)Pb(0.5)Sn(0.5)I(3) perovskite and combining itwith a subcell of evaporated FA(0.7)Cs(0.3)Pb-(I0.64Br0.36)(3), we report a 2-terminalall-perovskite tandem solar cell with champion open circuit voltageand efficiency of 2.06 V and 24.1%, respectively. This dry depositionmethod enables high reproducibility, opening avenues for modular,scalable multijunction devices even in complex architectures.
引用
收藏
页码:2728 / 2737
页数:10
相关论文
共 54 条
  • [51] Understanding Performance Limiting Interfacial Recombination in pin Perovskite Solar Cells
    Warby, Jonathan
    Zu, Fengshuo
    Zeiske, Stefan
    Gutierrez-Partida, Emilio
    Frohloff, Lennart
    Kahmann, Simon
    Frohna, Kyle
    Mosconi, Edoardo
    Radicchi, Eros
    Lang, Felix
    Shah, Sahil
    Pena-Camargo, Francisco
    Hempel, Hannes
    Unold, Thomas
    Koch, Norbert
    Armin, Ardalan
    De Angelis, Filippo
    Stranks, Samuel D.
    Neher, Dieter
    Stolterfoht, Martin
    [J]. ADVANCED ENERGY MATERIALS, 2022, 12 (12)
  • [52] Buried Interfaces in Halide Perovskite Photovoltaics
    Yang, Xiaoyu
    Luo, Deying
    Xiang, Yuren
    Zhao, Lichen
    Anaya, Miguel
    Shen, Yonglong
    Wu, Jiang
    Yang, Wenqiang
    Chiang, Yu-Hsien
    Tu, Yongguang
    Su, Rui
    Hu, Qin
    Yu, Hongyu
    Shao, Guosheng
    Huang, Wei
    Russell, Thomas P.
    Gong, Qihuang
    Stranks, Samuel D.
    Zhang, Wei
    Zhu, Rui
    [J]. ADVANCED MATERIALS, 2021, 33 (07)
  • [53] Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells
    Yang, Zhibin
    Yu, Zhenhua
    Wei, Haotong
    Xiao, Xun
    Ni, Zhenyi
    Chen, Bo
    Deng, Yehao
    Habisreutinger, Severin N.
    Chen, Xihan
    Wang, Kang
    Zhao, Jingjing
    Rudd, Peter N.
    Berry, Joseph J.
    Beard, Matthew C.
    Huang, Jinsong
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [54] Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells
    Zhang, Taiyang
    Dar, M. Ibrahim
    Li, Ge
    Xu, Feng
    Guo, Nanjie
    Gratzel, Michael
    Zhao, Yixin
    [J]. SCIENCE ADVANCES, 2017, 3 (09):