Fast Deformable Image Registration for Real- Time Target Tracking During Radiation Therapy Using Cine MRI and Deep Learning

被引:17
作者
Hunt, Brady [1 ,2 ,3 ]
Gill, Gobind S.
Alexander, Daniel A. [5 ]
Streeter, Samuel S. [1 ]
Gladstone, David J. [1 ,2 ,3 ]
Russo, Gregory A. [2 ,3 ]
Zaki, Bassem I. [2 ,3 ]
Pogue, Brian W. [4 ]
Zhang, Rongxiao [1 ,2 ,3 ]
机构
[1] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[2] Dartmouth Coll, Geisel Sch Med, Hanover, NH 03755 USA
[3] Dartmouth Hitchcock Med Ctr, Dartmouth Canc Ctr, Lebanon, NH 03766 USA
[4] Univ Wisconsin Madison, Dept Med Phys, Madison, WI USA
[5] Univ Penn, Philadelphia, PA USA
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2023年 / 115卷 / 04期
关键词
ADAPTIVE RADIOTHERAPY;
D O I
10.1016/j.ijrobp.2022.09.086
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: We developed a deep learning (DL) model for fast deformable image registration using 2-dimensional sagittal cine magnetic resonance imaging (MRI) acquired during radiation therapy and evaluated its potential for real-time target tracking compared with conventional image registration methods.Methods and Materials: Our DL model uses a pair of cine MRI images as input and provides a motion vector field (MVF) as output. The MVF is then applied to align the input images. A retrospective study was conducted to train and evaluate our model using cine MRI data from patients undergoing treatment for abdominal and thoracic tumors. For each treatment frac-tion, MR-linear accelerator delivery log files, tracking videos, and cine image files were analyzed. Individual MRI frames were temporally sampled to construct a large set of image registration pairs used to evaluate multiple methods. The DL model was optimized using 5-fold cross validation, and model outputs (transformed images and MVFs) using test set images were saved for comparison with 3 conventional registration methods (affine, b-spline, and demons). Evaluation metrics were 3-fold: (1) registration error, (2) MVF stability (both spatial and temporal), and (3) average computation time.Results: We analyzed >21 hours of cine MRI (>629,000 frames) acquired during 86 treatment fractions from 21 patients. In a test set of 10,320 image registration pairs, DL registration outperformed conventional methods in both registration error (affine, b-spline, demons, DL; root mean square error: 0.067, 0.040, 0.036, 0.032; paired t test demons vs DL: t[20] = 4.2, P < .001) and computation time per frame (51, 1150, 4583, 8 ms). Among deformable methods, spatial stability of resulting MVFs was comparable; however, the DL model had significantly improved temporal consistency.Conclusions: DL-based image registration can leverage large-scale MR cine data sets to outperform conventional registration methods and is a promising solution for real-time deformable motion estimation in radiation therapy.
引用
收藏
页码:983 / 993
页数:11
相关论文
共 23 条
[1]   Voxel-by-voxel correlation between radiologically radiation induced lung injury and dose after image-guided, intensity modulated radiotherapy for lung tumors [J].
Avanzo, Michele ;
Barbiero, Sara ;
Trovo, Marco ;
Bissonnette, Jean-Pierre ;
Jena, Rajesh ;
Stancanello, Joseph ;
Pirrone, Giovanni ;
Matrone, Fabio ;
Minatel, Emilio ;
Cappelletto, Cristina ;
Furlan, Carlo ;
Jaffray, David A. ;
Sartor, Giovanna .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 42 :150-156
[2]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[3]   Real-time intrafraction motion monitoring in external beam radiotherapy [J].
Bertholet, Jenny ;
Knopf, Antje ;
Eiben, Bjorn ;
McClelland, Jamie ;
Grimwood, Alexander ;
Harris, Emma ;
Menten, Martin ;
Poulsen, Per ;
Doan Trang Nguyen ;
Keall, Paul ;
Oelfke, Uwe .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (15)
[4]   Evaluation of super-resolution on 50 pancreatic cancer patients with real-time cine MRI from 0.35T MRgRT [J].
Chun, Jaehee ;
Lewis, Benjamin ;
Ji, Zhen ;
Shin, Jae-Ik ;
Park, Justin C. ;
Kim, Jin Sung ;
Kim, Taeho .
BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2021, 7 (05)
[5]   MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model [J].
Chun, Jaehee ;
Zhang, Hao ;
Gach, H. Michael ;
Olberg, Sven ;
Mazur, Thomas ;
Green, Olga ;
Kim, Taeho ;
Kim, Hyun ;
Kim, Jin Sung ;
Mutic, Sasa ;
Park, Justin C. .
MEDICAL PHYSICS, 2019, 46 (09) :4148-4164
[6]   Stability of conventional and machine learning-based tumor auto-segmentation techniques using undersampled dynamic radial bSSFP acquisitions on a 0.35 T hybrid MR-linac system [J].
Friedrich, Florian ;
Hoerner-Rieber, Juliane ;
Renkamp, C. Katharina ;
Kluter, Sebastian ;
Bachert, Peter ;
Ladd, Mark E. ;
Knowles, Benjamin R. .
MEDICAL PHYSICS, 2021, 48 (02) :587-596
[7]   Deep learning in medical image registration: a review [J].
Fu, Yabo ;
Lei, Yang ;
Wang, Tonghe ;
Curran, Walter J. ;
Liu, Tian ;
Yang, Xiaofeng .
PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (20)
[8]   The transformation of radiation oncology using real-time magnetic resonance guidance: A review [J].
Hall, William A. ;
Paulson, Eric S. ;
van der Heide, Uulke A. ;
Fuller, Clifton D. ;
Raaymakers, B. W. ;
Lagendijk, Jan J. W. ;
Li, X. Allen ;
Jaffray, David A. ;
Dawson, Laura A. ;
Erickson, Beth ;
Verheij, Marcel ;
Harrington, Kevin J. ;
Sahgal, Arjun ;
Lee, Percy ;
Parikh, Parag J. ;
Bassetti, Michael F. ;
Robinson, Clifford G. ;
Minsky, Bruce D. ;
Choudhury, Ananya ;
Tersteeg, Robert J. H. A. ;
Schultz, Christopher J. .
EUROPEAN JOURNAL OF CANCER, 2019, 122 :42-52
[9]   Deep learning in medical image registration: a survey [J].
Haskins, Grant ;
Kruger, Uwe ;
Yan, Pingkun .
MACHINE VISION AND APPLICATIONS, 2020, 31 (01)
[10]   Technical design and concept of a 0.35 T MR-Linac [J].
Klueter, Sebastian .
CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2019, 18 :98-101