Radiomics in gastrointestinal stromal tumours: an up-to-date review

被引:8
作者
Galluzzo, Antonio [1 ]
Boccioli, Sofia [1 ]
Danti, Ginevra [1 ]
De Muzio, Federica [2 ]
Gabelloni, Michela [3 ]
Fusco, Roberta [4 ]
Borgheresi, Alessandra [5 ,6 ]
Granata, Vincenza [7 ]
Giovagnoni, Andrea [5 ,6 ]
Gandolfo, Nicoletta [8 ,9 ]
Miele, Vittorio [1 ]
机构
[1] Careggi Univ Hosp, Dept Radiol, Largo Brambilla 3, I-50134 Florence, Italy
[2] Univ Molise, Dept Med & Hlth Sci V Tiberio, I-86100 Campobasso, Italy
[3] Univ Pisa, Dept Translat Res Diagnost & Intervent Radiol, Pisa, Italy
[4] Igea SpA, Med Oncol Div, I-80013 Naples, Italy
[5] Univ Politecn Marche, Dept Clin Special & Dent Sci, Via Conca 71, I-60126 Ancona, Italy
[6] Azienda Osped Univ Marche, Univ Hosp, Dept Radiol, Via Conca 71, I-60126 Ancona, Italy
[7] Ist Nazl Tumori IRCCS Fdn, Dept Radiol, Pascale IRCCS Napoli, I-80131 Naples, Italy
[8] Villa Scassi Hosp ASL 3, Diagnost Imaging Dept, Corso Scassi 1, I-16149 Genoa, Italy
[9] SIRM Fdn, Italian Soc Med & Intervent Radiol SIRM, Via Signora 2, I-20122 Milan, Italy
关键词
Gastrointestinal stromal tumours; Radiomics; Imaging; Diagnosis; Quantitative analysis; TEXTURE ANALYSIS; CT; HETEROGENEITY; DIAGNOSIS; CLASSIFICATION; MANAGEMENT; CANCER; IMAGES;
D O I
10.1007/s11604-023-01441-y
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Gastrointestinal stromal tumours are rare mesenchymal neoplasms originating from the Cajal cells and represent the most common sarcomas in the gastroenteric tract. Symptoms may be absent or non-specific, ranging from fatigue and weight loss to acute abdomen. Nowadays endoscopy, echoendoscopy, contrast-enhanced computed tomography, magnetic resonance imaging and positron emission tomography are the main methods for diagnosis. Because of their rarity, these neoplasms may not be included immediately in the differential diagnosis of a solitary abdominal mass. Radiomics is an emerging technique that can extract medical imaging information, not visible to the human eye, transforming it into quantitative data. The purpose of this review is to demonstrate how radiomics can improve the already known imaging techniques by providing useful tools for the diagnosis, treatment, and prognosis of these tumours.
引用
收藏
页码:1051 / 1061
页数:11
相关论文
共 87 条
  • [1] CT texture analysis for prediction of EGFR mutational status and ALK rearrangement in patients with non-small cell lung cancer
    Agazzi, Giorgio Maria
    Ravanelli, Marco
    Roca, Elisa
    Medicina, Daniela
    Balzarini, Piera
    Pessina, Carlotta
    Vermi, William
    Berruti, Alfredo
    Maroldi, Roberto
    Farina, Davide
    [J]. RADIOLOGIA MEDICA, 2021, 126 (06): : 786 - 794
  • [2] Current clinical management of gastrointestinal stromal tumor
    Akahoshi, Kazuya
    Oya, Masafumi
    Koga, Tadashi
    Shiratsuchi, Yuki
    [J]. WORLD JOURNAL OF GASTROENTEROLOGY, 2018, 24 (26) : 2806 - 2817
  • [3] Texture-based classification of different gastric tumors at contrast-enhanced CT
    Ba-Ssalamah, Ahmed
    Muin, Dina
    Schernthaner, Ruediger
    Kulinna-Cosentini, Christiana
    Bastati, Nina
    Stift, Judith
    Gore, Richard
    Mayerhoefer, Marius E.
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2013, 82 (10) : E537 - E543
  • [4] Imaging Heterogeneity in Lung Cancer: Techniques, Applications, and Challenges
    Bashir, Usman
    Siddique, Muhammad Musib
    Mclean, Emma
    Goh, Vicky
    Cook, Gary J.
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2016, 207 (03) : 534 - 543
  • [5] CT-derived radiomic features to discriminate histologic characteristics of pancreatic neuroendocrine tumors
    Benedetti, Giulia
    Mori, Martina
    Panzeri, Marta Maria
    Barbera, Maurizio
    Palumbo, Diego
    Sini, Carla
    Muffatti, Francesca
    Andreasi, Valentina
    Steidler, Stephanie
    Doglioni, Claudio
    Partelli, Stefano
    Manzoni, Marco
    Falconi, Massimo
    Fiorino, Claudio
    De Cobelli, Francesco
    [J]. RADIOLOGIA MEDICA, 2021, 126 (06): : 745 - 760
  • [6] Predicting cancer outcomes with radiomics and artificial intelligence in radiology
    Bera, Kaustav
    Braman, Nathaniel
    Gupta, Amit
    Velcheti, Vamsidhar
    Madabhushi, Anant
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2022, 19 (02) : 132 - 146
  • [7] Molecular Subtypes of KIT/PDGFRA Wild-Type Gastrointestinal Stromal Tumors A Report From the National Institutes of Health Gastrointestinal Stromal Tumor Clinic
    Boikos, Sosipatros A.
    Pappo, Alberto S.
    Killian, J. Keith
    LaQuaglia, Michael P.
    Weldon, Chris B.
    George, Suzanne
    Trent, Jonathan C.
    von Mehren, Margaret
    Wright, Jennifer A.
    Schiffman, Josh D.
    Raygada, Margarita
    Pacak, Karel
    Meltzer, Paul S.
    Miettinen, Markku M.
    Stratakis, Constantine
    Janeway, Katherine A.
    Helman, Lee J.
    [J]. JAMA ONCOLOGY, 2016, 2 (07) : 922 - 928
  • [8] Quantitative CT texture analysis in predicting PD-L1 expression in locally advanced or metastatic NSCLC patients
    Bracci, Stefano
    Dolciami, Miriam
    Trobiani, Claudio
    Izzo, Antonella
    Pernazza, Angelina
    D'Amati, Giulia
    Manganaro, Lucia
    Ricci, Paolo
    [J]. RADIOLOGIA MEDICA, 2021, 126 (11): : 1425 - 1433
  • [9] Automatic PI-RADS assignment by means of formal methods
    Brunese, Luca
    Brunese, Maria Chiara
    Carbone, Mattia
    Ciccone, Vincenzo
    Mercaldo, Francesco
    Santone, Antonella
    [J]. RADIOLOGIA MEDICA, 2022, 127 (01): : 83 - 89
  • [10] Texture analysis of medical images
    Castellano, G
    Bonilha, L
    Li, LM
    Cendes, F
    [J]. CLINICAL RADIOLOGY, 2004, 59 (12) : 1061 - 1069