An inverse design paradigm of multi-functional elastic metasurface via data-driven machine learning

被引:30
作者
Zhou, Weijian [1 ,2 ]
Wang, Shuoyuan [3 ]
Wu, Qian [4 ]
Xu, Xianchen [4 ]
Huang, Xinjing [3 ]
Huang, Guoliang [4 ]
Liu, Yang [3 ]
Fan, Zheng [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
[3] Tianjin Univ, State Key Lab Precis Measuring Technol & Instrumen, Tianjin 300072, Peoples R China
[4] Univ Missouri, Dept Mech & Aerosp Engn, Columbia, MO 65211 USA
基金
中国国家自然科学基金;
关键词
Acoustic metasurface; Inverse design; Machine learning; Multi-functional; Data-driven; ACOUSTIC METASURFACE; STIFFNESS;
D O I
10.1016/j.matdes.2022.111560
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Elastic metasurfaces have become one of the most promising platforms for manipulating mechanical wavefronts with the striking feature of ultra-thin geometry. The conventional design of mechanical metasurfaces significantly relies on numerical, trial-and-error methods to identify structural parameters of the unit cells, which requires huge computational resources and could be extremely challenging if the metasurface is multi-functional. Machine learning technique provides another powerful tool for the design of multi-functional elastic metasurfaces because of its excellent capability in building nonlinear mapping relation between high-dimensional input data and output data. In this paper, a machine learning network is introduced to extract the complex relation between high-dimensional geometrical parameters of the metasurface unit and its high-dimensional dynamic properties. Based on a big dataset, the welltrained network can play the role of a surrogate model in the inverse design of a multi-functional elastic metasurface to significantly shorten the time for the design. Such method can be conveniently extended to design other multi-functional metasurfaces for the manipulation of optical, acoustical or mechanical waves.(c) 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:10
相关论文
共 39 条
  • [1] Acoustic metasurfaces
    Assouar, Badreddine
    Liang, Bin
    Wu, Ying
    Li, Yong
    Cheng, Jian-Chun
    Jing, Yun
    [J]. NATURE REVIEWS MATERIALS, 2018, 3 (12): : 460 - 472
  • [2] Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens
    Chen, Jian
    Xiao, Jing
    Lisevych, Danylo
    Shakouri, Amir
    Fan, Zheng
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [3] An active mechanical Willis meta-layer with asymmetric polarizabilities
    Chen, Yangyang
    Li, Xiaopeng
    Hu, Gengkai
    Haberman, Michael R.
    Huang, Guoliang
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [4] A programmable metasurface for real time control of broadband elastic rays
    Chen, Yangyang
    Li, Xiaopeng
    Nassar, Hussein
    Hu, Gengkai
    Huang, Guoliang
    [J]. SMART MATERIALS AND STRUCTURES, 2018, 27 (11)
  • [5] Deep Colorization
    Cheng, Zezhou
    Yang, Qingxiong
    Sheng, Bin
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 415 - 423
  • [6] Chiu CC, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), P4774, DOI 10.1109/ICASSP.2018.8462105
  • [7] Image Style Transfer Using Convolutional Neural Networks
    Gatys, Leon A.
    Ecker, Alexander S.
    Bethge, Matthias
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2414 - 2423
  • [8] 6 Deep Learning in Drug Discovery
    Gawehn, Erik
    Hiss, Jan A.
    Schneider, Gisbert
    [J]. MOLECULAR INFORMATICS, 2016, 35 (01) : 3 - 14
  • [9] Deep learning for finance: deep portfolios
    Heaton, J. B.
    Polson, N. G.
    Witte, J. H.
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2017, 33 (01) : 3 - 12
  • [10] Double-Negative Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative Poisson's Ratio Properties
    Hewage, Trishan A. M.
    Alderson, Kim L.
    Alderson, Andrew
    Scarpa, Fabrizio
    [J]. ADVANCED MATERIALS, 2016, 28 (46) : 10323 - 10332