Metabolic Syndrome and Cardiac Remodeling Due to Mitochondrial Oxidative Stress Involving Gliflozins and Sirtuins

被引:15
作者
Sanz, Raul Lelio [1 ]
Inserra, Felipe [2 ]
Garcia Menendez, Sebastian [1 ,3 ]
Mazzei, Luciana [1 ,3 ]
Ferder, Leon [2 ]
Manucha, Walter [1 ,2 ]
机构
[1] Univ Nacl Cuyo, Fac Ciencias Med, Lab Farmacol Expt Basica & Traslac, Dept Patol,Area Farmacol, Mendoza, Argentina
[2] Univ Maimonides, Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecnol IMBECU CONICET, Inst Med & Biol Expt Cuyo, Mendoza, Argentina
关键词
SGLT-2; inhibitors; Cardiovascular diseases; Sirtuins; Oxidative stress; Inflammation; Mitochondrial dysfunction; PRESERVED EJECTION FRACTION; ANGIOTENSIN-II BLOCKADE; HEART-FAILURE; INHIBITOR EMPAGLIFLOZIN; CARDIOVASCULAR OUTCOMES; BETA-HYDROXYBUTYRATE; CALORIE RESTRICTION; DIASTOLIC FUNCTION; DEACETYLASE SIRT3; SGLT2; INHIBITORS;
D O I
10.1007/s11906-023-01240-w
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Purpose of ReviewTo address the mechanistic pathways focusing on mitochondria dysfunction, oxidative stress, sirtuins imbalance, and other contributors in patient with metabolic syndrome and cardiovascular disease. Sodium glucose co-transporter type 2 (SGLT-2) inhibitors deeply influence these mechanisms. Recent randomized clinical trials have shown impressive results in improving cardiac function and reducing cardiovascular and renal events. These unexpected results generate the need to deepen our understanding of the molecular mechanisms able to generate these effects to help explain such significant clinical outcomes.Recent FindingsCardiovascular disease is highly prevalent among individuals with metabolic syndrome and diabetes. Furthermore, mitochondrial dysfunction is a principal player in its development and persistence, including the consequent cardiac remodeling and events. Another central protagonist is the renin-angiotensin system; the high angiotensin II (Ang II) activity fuel oxidative stress and local inflammatory responses. Additionally, sirtuins decline plays a pivotal role in the process; they enhance oxidative stress by regulating adaptive responses to the cellular environment and interacting with Ang II in many circumstances, including cardiac and vascular remodeling, inflammation, and fibrosis.Fasting and lower mitochondrial energy generation are conditions that substantially reduce most of the mentioned cardiometabolic syndrome disarrangements. In addition, it increases sirtuins levels, and adenosine monophosphate-activated protein kinase (AMPK) signaling stimulates hypoxia-inducible factor-1 beta (HIF-1 beta) and favors ketosis. All these effects favor autophagy and mitophagy, clean the cardiac cells with damaged organelles, and reduce oxidative stress and inflammatory response, giving cardiac tissue protection. In this sense, SGLT-2 inhibitors enhance the level of at least four sirtuins, some located in the mitochondria. Moreover, late evidence shows that SLGT-2 inhibitors mimic this protective process, improving mitochondria function, oxidative stress, and inflammation.Considering the previously described protection at the cardiovascular level is necessary to go deeper in the knowledge of the effects of SGLT-2 inhibitors on the mitochondria function. Various of the protective effects these drugs clearly had shown in the trials, and we briefly describe it could depend on sirtuins enhance activity, oxidative stress reduction, inflammatory process attenuation, less interstitial fibrosis, and a consequent better cardiac function. This information could encourage investigating new therapeutic strategies for metabolic syndrome, diabetes, heart and renal failure, and other diseases.
引用
收藏
页码:91 / 106
页数:16
相关论文
共 146 条
[31]   Beyond the Glycaemic Control of Dapagliflozin: Impact on Arterial Stiffness and Macroangiopathy [J].
Gonzalez-Clemente, Jose M. ;
Garcia-Castillo, Maria ;
Gorgojo-Martinez, Juan J. ;
Jimenez, Alberto ;
Llorente, Ignacio ;
Matute, Eduardo ;
Tejera, Cristina ;
Izarra, Aitziber ;
Lecube, Albert .
DIABETES THERAPY, 2022, 13 (07) :1281-1298
[32]   Myocardial Gene Expression Signatures in Human Heart Failure With Preserved Ejection Fraction [J].
Hahn, Virginia S. ;
Knutsdottir, Hildur ;
Luo, Xin ;
Bedi, Kenneth ;
Margulies, Kenneth B. ;
Haldar, Saptarsi M. ;
Stolina, Marina ;
Yin, Jun ;
Khakoo, Aarif Y. ;
Vaishnav, Joban ;
Bader, Joel S. ;
Kass, David A. ;
Sharma, Kavita .
CIRCULATION, 2021, 143 (02) :120-134
[33]   Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies [J].
Hamdani, Nazha ;
Costantino, Sarah ;
Muegge, Andreas ;
Lebeche, Djamel ;
Tschoepe, Carsten ;
Thum, Thomas ;
Paneni, Francesco .
EUROPEAN HEART JOURNAL, 2021, 42 (20) :1940-1958
[34]   Protective mechanism of SIRT1 on Hcy-induced atrial fibrosis mediated by TRPC3 [J].
Han, Lu ;
Tang, Yanhua ;
Li, Shaochuan ;
Wu, Yanqing ;
Chen, Xiaoshu ;
Wu, Qinghua ;
Hong, Kui ;
Li, Juxiang .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2020, 24 (01) :488-510
[35]   SGLT inhibitors attenuate NO-dependent vascular relaxation in the pulmonary artery but not in the coronary artery [J].
Han, Ying ;
Cho, Young-Eun ;
Ayon, Ramon ;
Guo, Rui ;
Youssef, Katia D. ;
Pan, Minglin ;
Dai, Anzhi ;
Yuan, Jason X. -J. ;
Makino, Ayako .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2015, 309 (09) :L1027-L1036
[36]   Deacetylation of FoxO by Sirt1 Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes [J].
Hariharan, Nirmala ;
Maejima, Yasuhiro ;
Nakae, Jun ;
Paik, Jihye ;
DePinho, Ronald A. ;
Sadoshima, Junichi .
CIRCULATION RESEARCH, 2010, 107 (12) :1470-1482
[37]   Calorie Restriction and SIRT3 Trigger Global Reprogramming of the Mitochondrial Protein Acetylome [J].
Hebert, Alexander S. ;
Dittenhafer-Reed, Kristin E. ;
Yu, Wei ;
Bailey, Derek J. ;
Selen, Ebru Selin ;
Boersma, Melissa D. ;
Carson, Joshua J. ;
Tonelli, Marco ;
Balloon, Allison J. ;
Higbee, Alan J. ;
Westphall, Michael S. ;
Pagliarini, David J. ;
Prolla, Tomas A. ;
Assadi-Porter, Fariba ;
Roy, Sushmita ;
Denu, John M. ;
Coon, Joshua J. .
MOLECULAR CELL, 2013, 49 (01) :186-199
[38]   Dapagliflozin in Patients with Chronic Kidney Disease [J].
Heerspink, Hiddo J. L. ;
Stefansson, Bergur V. ;
Correa-Rotter, Ricardo ;
Chertow, Glenn M. ;
Greene, Tom ;
Hou, Fan-Fan ;
Mann, Johannes F. E. ;
McMurray, John J. V. ;
Lindberg, Magnus ;
Rossing, Peter ;
Sjostrom, C. David ;
Toto, Roberto D. ;
Langkilde, Anna-Maria ;
Wheeler, David C. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (15) :1436-1446
[39]   Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease [J].
Heerspink, Hiddo J. L. ;
Perco, Paul ;
Mulder, Skander ;
Leierer, Johannes ;
Hansen, Michael K. ;
Heinzel, Andreas ;
Mayer, Gert .
DIABETOLOGIA, 2019, 62 (07) :1154-1166
[40]   Empagliflozin in Patients with Chronic Kidney Disease [J].
Herrington, William G. ;
Staplin, Natalie ;
Wanner, Christoph ;
Green, Jennifer B. ;
Hauske, Sibylle J. ;
Emberson, Jonathan R. ;
Preiss, David ;
Judge, Parminder ;
Mayne, Kaitlin J. ;
Ng, Sarah Y. A. ;
Sammons, Emily ;
Zhu, Doreen ;
Hill, Michael ;
Stevens, Will ;
Wallendszus, Karl ;
Brenner, Susanne ;
Cheung, Alfred K. ;
Liu, Zhi-Hong ;
Li, Jing ;
Hooi, Lai Seong ;
Liu, Wen ;
Kadowaki, Takashi ;
Nangaku, Masaomi ;
Levin, Adeera ;
Cherney, David ;
Maggioni, Aldo P. ;
Pontremoli, Roberto ;
Deo, Rajat ;
Goto, Shinya ;
Rossello, Xavier ;
Tuttle, Katherine R. ;
Steubl, Dominik ;
Petrini, Michaela ;
Massey, Dan ;
Eilbracht, Jens ;
Brueckmann, Martina ;
Landray, Martin J. ;
Baigent, Colin ;
Haynes, Richard .
NEW ENGLAND JOURNAL OF MEDICINE, 2023, 388 (02) :117-127