Bayesian estimation of fractional difference parameter in ARFIMA models and its application

被引:4
作者
Miyandoab, Masoud Fazlalipour [1 ]
Nasiri, Parviz [1 ]
Mosammam, Ali M. [2 ]
机构
[1] Payame Noor Univ PNU, Dept Stat, POB 19395 4697, Tehran, Iran
[2] Univ Zanjan, Dept Stat, Zanjan, Iran
关键词
Long -term memory; Bayesian estimation; Akaike information criterion; Fractional difference; LONG-MEMORY; TIME-SERIES; UNIT-ROOT; IDENTIFICATION; PERSISTENCE; INFERENCE; DESIGN; OUTPUT;
D O I
10.1016/j.ins.2023.01.108
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recognizing and presenting the appropriate model is of particular importance to examine the statistical models for fitting time series data. Among time series models widely used in the analysis of economic, meteorological, geographical, and financial data is Auto Regressive Frac-tionally Integrated Moving Average (ARFIMA) model. In this model, and other time series models, the parameters of model are estimated by assuming that the average of data is constant. In this article, while investigating the behavior of ARFIMA model, Bayesian estimation of the fractional difference parameter (d) was presented considering the appropriate prior distribution. To check the efficiency of the proposed Bayesian estimation, using simulation and Akaike information criterion (AIC) it is shown that Bayesian estimation performs better compared to other methods. Finally, using a real data set and assuming a suitable prior distribution for the fractional differ-ence parameter (d), shows that ARFIMA (0, d,0) is a suitable model for these data. The goodness of fit of the ARFIMA model was evaluated according to the Bayesian estimation of parameters.
引用
收藏
页码:144 / 154
页数:11
相关论文
共 50 条
[41]   Parameter estimation for fractional power type diffusion: A hybrid Bayesian-deep learning approach [J].
Araya, Hector ;
Plaza-Vega, Francisco .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (22) :8234-8254
[42]   Bayesian parameter learning with an application [J].
Karimnezhad, Ali ;
Moradi, Fahimeh .
METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2016, 74 (01) :61-74
[43]   Parameter estimation in models with hidden variables : An application to a biotech process [J].
Jang, S. S. ;
De la Hoz, H. ;
Ben-zvi, A. ;
McCaffrey, W. C. ;
Gopaluni, R. B. .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2012, 90 (03) :690-702
[44]   Bayesian approach for parameter estimation of continuous-time stochastic volatility models using Fourier transform methods [J].
Merkle, Milan ;
Saporito, Yuri F. ;
Targino, Rodrigo S. .
STATISTICS & PROBABILITY LETTERS, 2020, 156
[45]   Duality of variable fractional order difference operators and its application in identification [J].
Sierociuk, D. ;
Twardy, M. .
BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2014, 62 (04) :809-815
[46]   Prediction from ARFIMA models: Comparisons between MLE and semiparametric estimation procedures [J].
Baillie, Richard T. ;
Kongcharoen, Chaleampong ;
Kapetanios, George .
INTERNATIONAL JOURNAL OF FORECASTING, 2012, 28 (01) :46-53
[47]   Parameter estimation for fractional Poisson processes [J].
Cahoy, Dexter O. ;
Uchaikin, Vladimir V. ;
Woyczynski, Wojbor A. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) :3106-3120
[48]   Fractional Brownian motion and parameter estimation [J].
Janak, Josef .
34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016), 2016, :359-364
[49]   Parameter Estimation for the Fractional Hawkes Process [J].
Habyarimana, Cassien ;
Aduda, Jane A. ;
Scalas, Enrico .
JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024,
[50]   A Short Note on Obtaining Item Parameter Estimates of IRT Models with Bayesian Estimation in Mplus [J].
Sen, Sedat ;
Cohen, Allan ;
Kim, Seock-ho .
JOURNAL OF MEASUREMENT AND EVALUATION IN EDUCATION AND PSYCHOLOGY-EPOD, 2020, 11 (03) :266-282