Bayesian estimation of fractional difference parameter in ARFIMA models and its application

被引:4
作者
Miyandoab, Masoud Fazlalipour [1 ]
Nasiri, Parviz [1 ]
Mosammam, Ali M. [2 ]
机构
[1] Payame Noor Univ PNU, Dept Stat, POB 19395 4697, Tehran, Iran
[2] Univ Zanjan, Dept Stat, Zanjan, Iran
关键词
Long -term memory; Bayesian estimation; Akaike information criterion; Fractional difference; LONG-MEMORY; TIME-SERIES; UNIT-ROOT; IDENTIFICATION; PERSISTENCE; INFERENCE; DESIGN; OUTPUT;
D O I
10.1016/j.ins.2023.01.108
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recognizing and presenting the appropriate model is of particular importance to examine the statistical models for fitting time series data. Among time series models widely used in the analysis of economic, meteorological, geographical, and financial data is Auto Regressive Frac-tionally Integrated Moving Average (ARFIMA) model. In this model, and other time series models, the parameters of model are estimated by assuming that the average of data is constant. In this article, while investigating the behavior of ARFIMA model, Bayesian estimation of the fractional difference parameter (d) was presented considering the appropriate prior distribution. To check the efficiency of the proposed Bayesian estimation, using simulation and Akaike information criterion (AIC) it is shown that Bayesian estimation performs better compared to other methods. Finally, using a real data set and assuming a suitable prior distribution for the fractional differ-ence parameter (d), shows that ARFIMA (0, d,0) is a suitable model for these data. The goodness of fit of the ARFIMA model was evaluated according to the Bayesian estimation of parameters.
引用
收藏
页码:144 / 154
页数:11
相关论文
共 50 条
[21]   Parameter Estimation for a Type of Fractional Diffusion Equation Based on Compact Difference Scheme [J].
Gu, Wei ;
Wei, Fang ;
Li, Min .
SYMMETRY-BASEL, 2022, 14 (03)
[22]   Bayesian inference for psychology, part III: Parameter estimation in nonstandard models [J].
Dora Matzke ;
Udo Boehm ;
Joachim Vandekerckhove .
Psychonomic Bulletin & Review, 2018, 25 :77-101
[23]   Bayesian estimation of the binomial parameter in sequential experiments [J].
Bunouf, Pierre .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2023, 32 (11) :2158-2171
[24]   Real-Time Bayesian Parameter Estimation for Item Response Models [J].
Weng, Ruby Chiu-Hsing ;
Coad, D. Stephen .
BAYESIAN ANALYSIS, 2018, 13 (01) :115-137
[25]   Bayesian inference for psychology, part III: Parameter estimation in nonstandard models [J].
Matzke, Dora ;
Boehm, Udo ;
Vandekerckhove, Joachim .
PSYCHONOMIC BULLETIN & REVIEW, 2018, 25 (01) :77-101
[26]   Bayesian parameter estimation for the Wnt pathway: an infinite mixture models approach [J].
Koutroumpas, Konstantinos ;
Ballarini, Paolo ;
Votsi, Irene ;
Cournede, Paul-Henry .
BIOINFORMATICS, 2016, 32 (17) :781-789
[27]   The parameter bayesian estimation of two-parameter exponentialpoisson distribution and its optimal property [J].
Xu, Biao ;
Guo, Yan ;
Zhu, Ning .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2016, 19 (04) :697-707
[28]   Parameter and delay estimation of fractional order models from step response [J].
Ahmed, Salim .
IFAC PAPERSONLINE, 2015, 48 (08) :942-947
[29]   BAYESIAN ESTIMATION FOR THE MULTIFRACTALITY PARAMETER [J].
Wendt, Herwig ;
Dobigeon, Nicolas ;
Tourneret, Jean-Yves ;
Abry, Patrice .
2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, :6556-6560
[30]   Improved Teaching Learning Based Optimization and Its Application in Parameter Estimation of Solar Cell Models [J].
Fan, Qinqin ;
Zhang, Yilian ;
Wang, Zhihuan .
INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2020, 26 (01) :1-12