Bayesian estimation of fractional difference parameter in ARFIMA models and its application

被引:3
作者
Miyandoab, Masoud Fazlalipour [1 ]
Nasiri, Parviz [1 ]
Mosammam, Ali M. [2 ]
机构
[1] Payame Noor Univ PNU, Dept Stat, POB 19395 4697, Tehran, Iran
[2] Univ Zanjan, Dept Stat, Zanjan, Iran
关键词
Long -term memory; Bayesian estimation; Akaike information criterion; Fractional difference; LONG-MEMORY; TIME-SERIES; UNIT-ROOT; IDENTIFICATION; PERSISTENCE; INFERENCE; DESIGN; OUTPUT;
D O I
10.1016/j.ins.2023.01.108
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recognizing and presenting the appropriate model is of particular importance to examine the statistical models for fitting time series data. Among time series models widely used in the analysis of economic, meteorological, geographical, and financial data is Auto Regressive Frac-tionally Integrated Moving Average (ARFIMA) model. In this model, and other time series models, the parameters of model are estimated by assuming that the average of data is constant. In this article, while investigating the behavior of ARFIMA model, Bayesian estimation of the fractional difference parameter (d) was presented considering the appropriate prior distribution. To check the efficiency of the proposed Bayesian estimation, using simulation and Akaike information criterion (AIC) it is shown that Bayesian estimation performs better compared to other methods. Finally, using a real data set and assuming a suitable prior distribution for the fractional differ-ence parameter (d), shows that ARFIMA (0, d,0) is a suitable model for these data. The goodness of fit of the ARFIMA model was evaluated according to the Bayesian estimation of parameters.
引用
收藏
页码:144 / 154
页数:11
相关论文
共 50 条
  • [11] A Bayesian Framework for Parameter Estimation in Dynamical Models
    Coelho, Flavio Codeco
    Codeco, Claudia Torres
    Gomes, M. Gabriela M.
    PLOS ONE, 2011, 6 (05):
  • [12] Testing for threshold effect in ARFIMA models: Application to US unemployment rate data
    Lahiani, A.
    Scaillet, O.
    INTERNATIONAL JOURNAL OF FORECASTING, 2009, 25 (02) : 418 - 428
  • [13] Bayesian parameter estimation for dynamical models in systems biology
    Linden, Nathaniel J.
    Kramer, Boris
    Rangamani, Padmini
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (10)
  • [14] Application of Bayesian Estimation Method in Parameter Estimation of Alpha Factor Model
    An J.
    Yan L.
    Hedongli Gongcheng/Nuclear Power Engineering, 2021, 42 (02): : 157 - 160
  • [15] A Bayesian Monte Carlo Markov Chain Method for Parameter Estimation of Fractional Differenced Gaussian Processes
    Olivares, G.
    Teferle, F. N.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (09) : 2405 - 2412
  • [16] Fast Bayesian parameter estimation for stochastic logistic growth models
    Heydari, Jonathan
    Lawless, Conor
    Lydall, David A.
    Wilkinson, Darren J.
    BIOSYSTEMS, 2014, 122 : 55 - 72
  • [17] Application of Fractional Calculus for Parameter Estimation of Nonlinear Wiener Systems With Time Delay
    Kothari, Kajal
    IEEE ACCESS, 2024, 12 : 26281 - 26294
  • [18] Estimation and testing of arfima models in the real exchange rate
    Gil-ALana, LA
    Toro, J
    INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 2002, 7 (04) : 279 - 292
  • [19] Bayesian Parameter Estimation
    Simoen, E.
    Lombaert, G.
    IDENTIFICATION METHODS FOR STRUCTURAL HEALTH MONITORING, 2016, 567 : 89 - 115
  • [20] Design of delayed fractional state variable filter for parameter estimation of fractional nonlinear models
    Allafi, Walid
    Zajic, Ivan
    Uddin, Kotub
    Shen, Zhonghua
    Marco, James
    Burnham, Keith
    NONLINEAR DYNAMICS, 2018, 94 (04) : 2697 - 2713