Bayesian estimation of fractional difference parameter in ARFIMA models and its application

被引:4
作者
Miyandoab, Masoud Fazlalipour [1 ]
Nasiri, Parviz [1 ]
Mosammam, Ali M. [2 ]
机构
[1] Payame Noor Univ PNU, Dept Stat, POB 19395 4697, Tehran, Iran
[2] Univ Zanjan, Dept Stat, Zanjan, Iran
关键词
Long -term memory; Bayesian estimation; Akaike information criterion; Fractional difference; LONG-MEMORY; TIME-SERIES; UNIT-ROOT; IDENTIFICATION; PERSISTENCE; INFERENCE; DESIGN; OUTPUT;
D O I
10.1016/j.ins.2023.01.108
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recognizing and presenting the appropriate model is of particular importance to examine the statistical models for fitting time series data. Among time series models widely used in the analysis of economic, meteorological, geographical, and financial data is Auto Regressive Frac-tionally Integrated Moving Average (ARFIMA) model. In this model, and other time series models, the parameters of model are estimated by assuming that the average of data is constant. In this article, while investigating the behavior of ARFIMA model, Bayesian estimation of the fractional difference parameter (d) was presented considering the appropriate prior distribution. To check the efficiency of the proposed Bayesian estimation, using simulation and Akaike information criterion (AIC) it is shown that Bayesian estimation performs better compared to other methods. Finally, using a real data set and assuming a suitable prior distribution for the fractional differ-ence parameter (d), shows that ARFIMA (0, d,0) is a suitable model for these data. The goodness of fit of the ARFIMA model was evaluated according to the Bayesian estimation of parameters.
引用
收藏
页码:144 / 154
页数:11
相关论文
共 50 条
[11]   A Bayesian Framework for Parameter Estimation in Dynamical Models [J].
Coelho, Flavio Codeco ;
Codeco, Claudia Torres ;
Gomes, M. Gabriela M. .
PLOS ONE, 2011, 6 (05)
[12]   Testing for threshold effect in ARFIMA models: Application to US unemployment rate data [J].
Lahiani, A. ;
Scaillet, O. .
INTERNATIONAL JOURNAL OF FORECASTING, 2009, 25 (02) :418-428
[13]   Bayesian parameter estimation for dynamical models in systems biology [J].
Linden, Nathaniel J. ;
Kramer, Boris ;
Rangamani, Padmini .
PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (10)
[14]   Application of Bayesian Estimation Method in Parameter Estimation of Alpha Factor Model [J].
An J. ;
Yan L. .
Hedongli Gongcheng/Nuclear Power Engineering, 2021, 42 (02) :157-160
[15]   A Bayesian Monte Carlo Markov Chain Method for Parameter Estimation of Fractional Differenced Gaussian Processes [J].
Olivares, G. ;
Teferle, F. N. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (09) :2405-2412
[16]   Fast Bayesian parameter estimation for stochastic logistic growth models [J].
Heydari, Jonathan ;
Lawless, Conor ;
Lydall, David A. ;
Wilkinson, Darren J. .
BIOSYSTEMS, 2014, 122 :55-72
[17]   Application of Fractional Calculus for Parameter Estimation of Nonlinear Wiener Systems With Time Delay [J].
Kothari, Kajal .
IEEE ACCESS, 2024, 12 :26281-26294
[18]   Bayesian Parameter Estimation [J].
Simoen, E. ;
Lombaert, G. .
IDENTIFICATION METHODS FOR STRUCTURAL HEALTH MONITORING, 2016, 567 :89-115
[19]   Estimation and testing of arfima models in the real exchange rate [J].
Gil-ALana, LA ;
Toro, J .
INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 2002, 7 (04) :279-292
[20]   Design of delayed fractional state variable filter for parameter estimation of fractional nonlinear models [J].
Allafi, Walid ;
Zajic, Ivan ;
Uddin, Kotub ;
Shen, Zhonghua ;
Marco, James ;
Burnham, Keith .
NONLINEAR DYNAMICS, 2018, 94 (04) :2697-2713