Abnormal white matter changes in Alzheimer?s disease based on diffusion tensor imaging: A systematic review

被引:58
作者
Chen, Yu [1 ]
Wang, Yifei [2 ]
Song, Zeyu [1 ]
Fan, Yingwei [1 ]
Gao, Tianxin [2 ,3 ]
Tang, Xiaoying [1 ,2 ,4 ]
机构
[1] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Life Sci, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Sch Life Sci, 5 Zhongguancun South St, Beijing 100081, Peoples R China
[4] Beijing Inst Technol, Sch Med Technol, Sch Life Sci, 5 Zhongguancun South St, Beijing 100081, Peoples R China
关键词
SCD; MCI; Alzheimer?s dementia; Multilevel DTI analysis; Assisted recognition; MILD COGNITIVE IMPAIRMENT; SUBJECTIVE MEMORY IMPAIRMENT; OPEN ACCESS SERIES; RICH-CLUB; MRI DATA; FRONTOTEMPORAL DEMENTIA; MICROSTRUCTURAL CHANGES; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; STATISTICAL-ANALYSIS;
D O I
10.1016/j.arr.2023.101911
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Alzheimer's disease (AD) is a degenerative neurological disease in elderly individuals. Subjective cognitive decline (SCD), mild cognitive impairment (MCI) and further development to dementia (d-AD) are considered to be major stages of the progressive pathological development of AD. Diffusion tensor imaging (DTI), one of the most important modalities of MRI, can describe the microstructure of white matter through its tensor model. It is widely used in understanding the central nervous system mechanism and finding appropriate potential bio-markers for the early stages of AD. Based on the multilevel analysis methods of DTI (voxelwise, fiberwise and networkwise), we summarized that AD patients mainly showed extensive microstructural damage, structural disconnection and topological abnormalities in the corpus callosum, fornix, and medial temporal lobe, including the hippocampus and cingulum. The diffusion features and structural connectomics of specific regions can provide information for the early assisted recognition of AD. The classification accuracy of SCD and normal controls can reach 92.68% at present. And due to the further changes of brain structure and function, the classification accuracy of MCI, d-AD and normal controls can reach more than 97%. Finally, we summarized the limitations of current DTI-based AD research and propose possible future research directions.
引用
收藏
页数:17
相关论文
共 176 条
[111]   The Fornix Sign: A Potential Sign for Alzheimer's Disease Based on Diffusion Tensor Imaging [J].
Oishi, Kenichi ;
Mielke, Michelle M. ;
Albert, Marilyn ;
Lyketsos, Constantine G. ;
Mori, Susumu .
JOURNAL OF NEUROIMAGING, 2012, 22 (04) :365-374
[112]   Relationship between apathy and diffusion tensor imaging metrics of the brain in Alzheimer's disease [J].
Ota, Miho ;
Sato, Noriko ;
Nakata, Yasuhiro ;
Arima, Kunimasa ;
Uno, Masatake .
INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, 2012, 27 (07) :722-726
[113]   WHITE MATTER AS A TRANSPORT SYSTEM [J].
Paus, T. ;
Pesaresi, M. ;
French, L. .
NEUROSCIENCE, 2014, 276 :117-125
[114]   Connectome-derived diffusion characteristics of the fornix in Alzheimer's disease [J].
Perea, Rodrigo D. ;
Rabin, Jennifer S. ;
Fujiyoshi, Megan G. ;
Neal, Taylor E. ;
Smith, Emily E. ;
Van Dijk, Koene R. A. ;
Hedden, Trey .
NEUROIMAGE-CLINICAL, 2018, 19 :331-342
[115]   Mild cognitive impairment classification using combined structural and diffusion imaging biomarkers [J].
Perez-Gonzalez, Jorge ;
Jimenez-Angeles, Luis ;
Rojas Saavedra, Karla ;
Barbara Morales, Eduardo ;
Medina-Banuelos, Veronica .
PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (15)
[116]   Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards [J].
Plitt, Mark ;
Barnes, Kelly Anne ;
Martin, Alex .
NEUROIMAGE-CLINICAL, 2015, 7 :359-366
[117]   Subjective Cognitive Decline in Preclinical Alzheimer's Disease [J].
Rabin, Laura A. ;
Smart, Colette M. ;
Amariglio, Rebecca E. .
ANNUAL REVIEW OF CLINICAL PSYCHOLOGY, VOL 13, 2017, 13 :369-396
[118]   Investigating white matter fibre density and morphology using fixel-based analysis [J].
Raffelt, David A. ;
Tournier, J-Donald ;
Smith, Robert E. ;
Vaughan, David N. ;
Jackson, Graeme ;
Ridgway, Gerard R. ;
Connelly, Alan .
NEUROIMAGE, 2017, 144 :58-73
[119]   Connectivity-based fixel enhancement: Whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres [J].
Raffelt, David A. ;
Smith, Robert E. ;
Ridgway, Gerard R. ;
Tournier, J-Donald ;
Vaughan, David N. ;
Rose, Stephen ;
Henderson, Robert ;
Connelly, Alan .
NEUROIMAGE, 2015, 117 :40-55
[120]   Group-Level Progressive Alterations in Brain Connectivity Patterns Revealed by Diffusion-Tensor Brain Networks across Severity Stages in Alzheimer's Disease [J].
Rasero, Javier ;
Alonso-Montes, Carmen ;
Diez, Ibai ;
Olabarrieta-Landa, Laiene ;
Remaki, Lakhdar ;
Escudero, Inaki ;
Mateos, Beatriz ;
Bonifazi, Paolo ;
Fernandez, Manuel ;
Carlos Arango-Lasprilla, Juan ;
Stramaglia, Sebastiano ;
Cortes, Jesus M. .
FRONTIERS IN AGING NEUROSCIENCE, 2017, 9