Dissemination of Tn916-Related Integrative and Conjugative Elements in Streptococcus pneumoniae Occurs by Transformation and Homologous Recombination in Nasopharyngeal Biofilms

被引:4
作者
Antezana, Brenda S. S. [1 ]
Lohsen, Sarah [2 ]
Wu, Xueqing [3 ]
Vidal, Jorge E. E. [4 ]
Tzeng, Yih-Ling [2 ]
Stephens, David S. S. [2 ]
机构
[1] Emory Univ, Microbiol & Mol Genet Program, Grad Div Biol & Biomed Sci, Laney Grad Sch, Atlanta, GA USA
[2] Emory Univ, Dept Med, Div Infect Dis, Sch Med, Atlanta, GA 30322 USA
[3] Zhejiang Univ, Sir Run Run Shaw Hosp, Dept Infect Dis, Coll Med, Hangzhou, Peoples R China
[4] Univ Mississippi, Dept Cell & Mol Biol, Med Ctr, Jackson, MS USA
基金
美国国家卫生研究院;
关键词
Streptococcus pneumoniae; antibiotic resistance; biofilm; integrative and conjugative element; transformation; MOLECULAR CHARACTERIZATION; GENETIC-TRANSFORMATION; MACROLIDE-RESISTANCE; NUCLEOTIDE-SEQUENCE; DNA; COMPETENCE; TN916; TRANSPOSITION; COLONIZATION; AZITHROMYCIN;
D O I
10.1128/spectrum.03759-22
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Multidrug resistance in Streptococcus pneumoniae (or pneumococcus) continues to be a global challenge. An important class of antibiotic resistance determinants disseminating in S. pneumoniae are >20-kb Tn916-related integrative and conjugative elements (ICEs), such as Tn2009, Tn6002, and Tn2010. Although conjugation has been implicated as the transfer mechanism for ICEs in several bacteria, including S. pneumoniae, the molecular basis for widespread dissemination of pneumococcal Tn916-related ICEs remains to be fully elucidated. We found that Tn2009 acquisition was not detectable via in vitro transformation nor conjugative mating with donor GA16833, yielding a transfer frequency of 2009 conjugative gene expression was not significantly induced, and ICE circular intermediate formation was not detected in biofilms. Consistently, Tn2009 transfer efficiency in biofilms was not affected by deletion of the ICE conjugative gene ftsK. However, GA16833 Tn2009 transfer occurred efficiently at a recombination frequency (rF) of 10(-4) in dual-strain biofilms formed in a human nasopharyngeal cell bioreactor. DNase I addition and deletions of the early competence gene comE or transformation apparatus genes comEA and comEC in the D39 recipient strain prevented Tn2009 acquisition (rF of <10(-7)). Genome sequencing and single nucleotide polymorphism analyses of independent recombinants of recipient genotype identified similar to 33- to similar to 55-kb donor DNAs containing intact Tn2009, supporting homologous recombination. Additional pneumococcal donor and recipient combinations were demonstrated to efficiently transfer Tn916-related ICEs at a rF of 10(-4) in the biofilms. Tn916-related ICEs horizontally disseminate at high frequency in human nasopharyngeal S. pneumoniae biofilms by transformation and homologous recombination of >30-kb DNA fragments into the pneumococcal genome. IMPORTANCE The World Health Organization has designated Streptococcus pneumoniae as a priority pathogen for research and development of new drug treatments due to extensive multidrug resistance. Multiple strains of S. pneumoniae colonize and form mixed biofilms in the human nasopharynx, which could enable exchange of antibiotic resistance determinants. Tn916-related integrative and conjugative elements (ICEs) are largely responsible for the widespread presence of macrolide and tetracycline resistance in S. pneumoniae. Utilizing a system that simulates colonization of donor and recipient S. pneumoniae strains in the human nasopharynx, efficient transfer of Tn916-related ICEs occurred in human nasopharyngeal biofilms, in contrast to in vitro conditions of planktonic cells with exogenous DNA. This high-frequency Tn916-related ICE transfer between S. pneumoniae strains in biofilms was due to transformation and homologous recombination, not conjugation. Understanding the molecular mechanism for dissemination of Tn916-related ICEs can facilitate the design of new strategies to combat antibiotic resistance.
引用
收藏
页数:19
相关论文
共 67 条
[1]   Mechanisms of genome evolution of Streptococcus [J].
Andam, Cheryl P. ;
Hanage, William P. .
INFECTION GENETICS AND EVOLUTION, 2015, 33 :334-342
[2]   Uptake of transforming DNA in Gram-positive bacteria:: a view from Streptococcus pneumoniae [J].
Bergé, M ;
Moscoso, M ;
Prudhomme, M ;
Martin, B ;
Claverys, JP .
MOLECULAR MICROBIOLOGY, 2002, 45 (02) :411-421
[3]   Macrolide and azithromycin use are linked to increased macrolide resistance in Streptococcus pneumoniae [J].
Bergman, Miika ;
Huikko, Solja ;
Huovinen, Pentti ;
Paakkari, Pirkko ;
Seppala, Helena .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2006, 50 (11) :3646-3650
[4]   Circularization of Tn916 is required for expression of the transposon-encoded transfer functions:: characterization of long tetracycline-inducible transcripts reading through the attachment site [J].
Celli, J ;
Trieu-Cuot, P .
MOLECULAR MICROBIOLOGY, 1998, 28 (01) :103-117
[5]   Composite mobile genetic elements disseminating macrolide resistance in Streptococcus pneumoniae [J].
Chancey, Scott T. ;
Agrawal, Sonia ;
Schroeder, Max R. ;
Farley, Monica M. ;
Tettelin, Herve ;
Stephens, David S. .
FRONTIERS IN MICROBIOLOGY, 2015, 6
[6]   CONSTRUCTION AND EVALUATION OF NEW DRUG-RESISTANCE CASSETTES FOR GENE DISRUPTION MUTAGENESIS IN STREPTOCOCCUS-PNEUMONIAE, USING AN AMI TEST PLATFORM [J].
CLAVERYS, JP ;
DINTILHAC, A ;
PESTOVA, EV ;
MARTIN, B ;
MORRISON, DA .
GENE, 1995, 164 (01) :123-128
[7]   New Tn916-related elements causing erm(B)-mediated erythromycin resistance in tetracycline-susceptible pneumococci [J].
Cochetti, Ileana ;
Tili, Emily ;
Vecchi, Manuela ;
Manzin, Aldo ;
Mingoia, Marina ;
Varaldo, Pietro E. ;
Montanari, Maria Pia .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2007, 60 (01) :127-131
[8]   Evolution via recombination: Cell-to-cell contact facilitates larger recombination events in Streptococcus pneumoniae [J].
Cowley, Lauren A. ;
Petersen, Fernanda C. ;
Junges, Roger ;
Jimenez, Jimson D. ;
Morrison, Donald A. ;
Hanage, William P. .
PLOS GENETICS, 2018, 14 (06)
[9]   Rapid Pneumococcal Evolution in Response to Clinical Interventions [J].
Croucher, Nicholas J. ;
Harris, Simon R. ;
Fraser, Christophe ;
Quail, Michael A. ;
Burton, John ;
van der Linden, Mark ;
McGee, Lesley ;
von Gottberg, Anne ;
Song, Jae Hoon ;
Ko, Kwan Soo ;
Pichon, Bruno ;
Baker, Stephen ;
Parry, Christopher M. ;
Lambertsen, Lotte M. ;
Shahinas, Dea ;
Pillai, Dylan R. ;
Mitchell, Timothy J. ;
Dougan, Gordon ;
Tomasz, Alexander ;
Klugman, Keith P. ;
Parkhill, Julian ;
Hanage, William P. ;
Bentley, Stephen D. .
SCIENCE, 2011, 331 (6016) :430-434
[10]   Tn2009, a Tn916-like element containing mef(E) in Streptococcus pneumoniae [J].
Del Grosso, M ;
d'Abusco, AS ;
Iannelli, F ;
Pozzi, G ;
Pantosti, A .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2004, 48 (06) :2037-2042