Stability of stationary solutions to the Navier-Stokes equations in the Besov space

被引:3
作者
Kozono, Hideo [1 ,2 ,4 ]
Shimizu, Senjo [3 ]
机构
[1] Waseda Univ, Dept Math, Tokyo, Japan
[2] Tohoku Univ, Res Alliance Ctr Math Sci, Sendai, Japan
[3] Kyoto Univ, Grad Sch Human & Environm Studies, Kyoto, Japan
[4] Waseda Univ, Dept Math, Tokyo 1698555, Japan
关键词
homogeneous Besov space; Navier-Stokes equations; stability; stationary solution; ASYMPTOTIC STABILITY; SINGULAR SOLUTIONS; SYSTEM;
D O I
10.1002/mana.202100150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the stability of the stationary solution w of the Navier-Stokes equations in the whole space Rn$\mathbb {R}<^>n$ for n >= 3$n \ge 3$. It is clarified that if w is small in B?p*,q '-1+np*$\dot{B}<^>{-1+\frac{n}{p_\ast }}_{p_\ast , q<^>{\prime }}$ for 1 <= p*<n$1 \le p_\ast <n$ and 1<q '<= 2$1 < q<^>{\prime } \le 2$, then for every small initial disturbance a is an element of B?p0,q-1+np0$a \in \dot{B}<^>{-1+ \frac{n}{p_0}}_{p_0,q}$ with 1 <= p0<n$1 \le p_0<n$ and 2 <= q{\prime } =1$), there exists a unique solution v(t)$v(t)$ of the nonstationary Navier-Stokes equations on (0, infinity) with v(0)=w+a$v(0) = w+a$ such that parallel to v(t)-w parallel to Lr=O(t-n2(1n-1r))$\Vert v(t) - w\Vert _{L<^>r}=O(t<^>{-\frac{n}{2}(\frac{1}{n} - \frac{1}{r})})$ and parallel to v(t)-w parallel to B?p,qs=O(t-n2(1n-1p)-s2)$\Vert v(t) - w\Vert _{\dot{B}<^>s_{p, q}} =O(t<^>{-\frac{n}{2}(\frac{1}{n} - \frac{1}{p})-\frac{s}{2}})$ as t ->infinity$t\rightarrow \infty$, for p0 <= p<n$p_0 \le p <n$, n<r0$s > 0$.
引用
收藏
页码:1964 / 1982
页数:19
相关论文
共 19 条
[11]   On a larger class of stable solutions to the Navier-Stokes equations in exterior domains [J].
Kozono, H ;
Yamazaki, M .
MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (04) :751-785
[12]   ON STABILITY OF NAVIER-STOKES FLOWS IN EXTERIOR DOMAINS [J].
KOZONO, H ;
OGAWA, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (01) :1-31
[13]   Asymptotic stability of large solutions with large perturbation to the Navier-Stokes equations [J].
Kozono, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 176 (02) :153-197
[14]   Navier-Stokes equations with external forces in time-weighted Besov spaces [J].
Kozono, Hideo ;
Shimizu, Senjo .
MATHEMATISCHE NACHRICHTEN, 2018, 291 (11-12) :1781-1800
[15]  
Li YY, 2023, J MATH FLUID MECH, V25, DOI 10.1007/s00021-022-00751-x
[16]  
Ogawa T., 2003, Kyushu J. Math, V57, P303, DOI [10.2206/kyushujm.57.303, DOI 10.2206/KYUSHUJM.57.303]
[17]   GLOBAL STABILITY OF LARGE SOLUTIONS TO THE 3D NAVIER-STOKES EQUATIONS [J].
PONCE, G ;
RACKE, R ;
SIDERIS, TC ;
TITI, ES .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 159 (02) :329-341
[18]  
Stein M. E., 1970, Singular integrals and differentiability properties of functions
[19]   Well-Posedness and Ill-Posedness Problems of the Stationary Navier-Stokes Equations in Scaling Invariant Besov Spaces [J].
Tsurumi, Hiroyuki .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 234 (02) :911-923