Stability of stationary solutions to the Navier-Stokes equations in the Besov space

被引:3
作者
Kozono, Hideo [1 ,2 ,4 ]
Shimizu, Senjo [3 ]
机构
[1] Waseda Univ, Dept Math, Tokyo, Japan
[2] Tohoku Univ, Res Alliance Ctr Math Sci, Sendai, Japan
[3] Kyoto Univ, Grad Sch Human & Environm Studies, Kyoto, Japan
[4] Waseda Univ, Dept Math, Tokyo 1698555, Japan
关键词
homogeneous Besov space; Navier-Stokes equations; stability; stationary solution; ASYMPTOTIC STABILITY; SINGULAR SOLUTIONS; SYSTEM;
D O I
10.1002/mana.202100150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the stability of the stationary solution w of the Navier-Stokes equations in the whole space Rn$\mathbb {R}<^>n$ for n >= 3$n \ge 3$. It is clarified that if w is small in B?p*,q '-1+np*$\dot{B}<^>{-1+\frac{n}{p_\ast }}_{p_\ast , q<^>{\prime }}$ for 1 <= p*<n$1 \le p_\ast <n$ and 1<q '<= 2$1 < q<^>{\prime } \le 2$, then for every small initial disturbance a is an element of B?p0,q-1+np0$a \in \dot{B}<^>{-1+ \frac{n}{p_0}}_{p_0,q}$ with 1 <= p0<n$1 \le p_0<n$ and 2 <= q{\prime } =1$), there exists a unique solution v(t)$v(t)$ of the nonstationary Navier-Stokes equations on (0, infinity) with v(0)=w+a$v(0) = w+a$ such that parallel to v(t)-w parallel to Lr=O(t-n2(1n-1r))$\Vert v(t) - w\Vert _{L<^>r}=O(t<^>{-\frac{n}{2}(\frac{1}{n} - \frac{1}{r})})$ and parallel to v(t)-w parallel to B?p,qs=O(t-n2(1n-1p)-s2)$\Vert v(t) - w\Vert _{\dot{B}<^>s_{p, q}} =O(t<^>{-\frac{n}{2}(\frac{1}{n} - \frac{1}{p})-\frac{s}{2}})$ as t ->infinity$t\rightarrow \infty$, for p0 <= p<n$p_0 \le p <n$, n<r0$s > 0$.
引用
收藏
页码:1964 / 1982
页数:19
相关论文
共 19 条
[1]  
Bergh J., 1976, Interpolation spaces. An introduction
[2]   ON STABILITY OF EXTERIOR STATIONARY NAVIER-STOKES FLOWS [J].
BORCHERS, W ;
MIYAKAWA, T .
ACTA MATHEMATICA, 1995, 174 (02) :311-382
[3]   Stability of singular solutions to the Navier-Stokes system [J].
Cannone, Marco ;
Karch, Grzegorz ;
Pilarczyk, Dominika ;
Wu, Gang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 314 :316-339
[4]   Asymptotic stability of stationary Navier-Stokes flow in Besov spaces [J].
Cunanan, Jayson ;
Okabe, Takahiro ;
Tsutsui, Yohei .
ASYMPTOTIC ANALYSIS, 2022, 129 (01) :29-50
[5]   LP-STABILITY FOR THE STRONG SOLUTIONS OF THE NAVIER-STOKES EQUATIONS IN THE WHOLE SPACE [J].
DAVEIGA, HB ;
SECCHI, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 98 (01) :65-69
[6]   Asymptotics of solutions to the Navier-Stokes system in exterior domains [J].
Iftimie, Dragos ;
Karch, Grzegorz ;
Lacave, Christophe .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 90 :785-806
[7]   Stationary Solution to the Navier-Stokes Equations in the Scaling Invariant Besov Space and its Regularity [J].
Kaneko, Kenta ;
Kozono, Hideo ;
Shimizu, Senjo .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2019, 68 (03) :857-880
[8]   L2-asymptotic stability of singular solutions to the Navier-Stokes system of equations in R3 [J].
Karch, Grzegorz ;
Pilarczyk, Dominika ;
Schonbek, Maria E. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (01) :14-40
[9]   Asymptotic Stability of Landau Solutions to Navier-Stokes System [J].
Karch, Grzegorz ;
Pilarczyk, Dominika .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (01) :115-131
[10]  
Kozono H, 1995, INDIANA U MATH J, V44, P1307