In vitro and in silico evaluation of antiretrovirals against SARS-CoV-2: A drug repurposing approach

被引:10
作者
Zapata-Cardona, Maria I. [1 ]
Florez-Alvarez, Lizdany [1 ,2 ]
Guerra-Sandoval, Ariadna L. [3 ]
Chvatal-Medina, Mateo [1 ]
Guerra-Almonacid, Carlos M. [3 ]
Hincapie-Garcia, Jaime [4 ]
Hernandez, Juan C. [5 ]
Rugeles, Maria T. [1 ]
Zapata-Builes, Wildeman [1 ,5 ]
机构
[1] Univ Antioquia UdeA, Fac Med, Grp Inmunovirol, Medellin, Colombia
[2] Univ Sao Paulo, Inst Biomed Sci, Sao Paulo, Brazil
[3] Univ Tolima, Grp Invest GIRYSOUT, Ibague, Colombia
[4] Univ Antioquia UdeA, Fac Ciencias Farmaceut Yalimentarias, Grp Invest, Promoc & prevenc farmaceut, Medellin, Colombia
[5] Univ Cooperat Colombia, Fac Med, Grp Infettare, Medellin, Colombia
来源
AIMS MICROBIOLOGY | 2023年 / 9卷 / 01期
关键词
antiretrovirals; SARS-CoV-2; COVID-19; molecular docking; drug repurposing; NUCLEOSIDE ANALOGS; MAIN PROTEASE; DOCKING; EXORIBONUCLEASE; INHIBITORS; INFECTION; VIRUS;
D O I
10.3934/microbiol.2023002
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: Drug repurposing is a valuable strategy for rapidly developing drugs for treating COVID-19. This study aimed to evaluate the antiviral effect of six antiretrovirals against SARS-CoV-2 in vitro and in silico. Methods: The cytotoxicity of lamivudine, emtricitabine, tenofovir, abacavir, efavirenz and raltegravir on Vero E6 was evaluated by MTT assay. The antiviral activity of each of these compounds was evaluated via a pre-post treatment strategy. The reduction in the viral titer was assessed by plaque assay. In addition, the affinities of the antiretroviral interaction with viral targets RdRp (RNA-dependent RNA polymerase), ExoN-NSP10 (exoribonuclease and its cofactor, the non-structural protein 10) complex and 3CLpro (3-chymotrypsin-like cysteine protease) were evaluated by molecular docking. Results: Lamivudine exhibited antiviral activity against SARS-CoV-2 at 200 mu M (58.3%) and 100 mu M (66.7%), while emtricitabine showed anti-SARS-CoV-2 activity at 100 mu M (59.6%), 50 mu M (43.4%) and 25 mu M (33.3%). Raltegravir inhibited SARS-CoV-2 at 25, 12.5 and 6.3 mu M (43.3%, 39.9% and 38.2%, respectively). The interaction between the antiretrovirals and SARS-CoV-2 RdRp, ExoN-NSP10 and 3CLpro yielded favorable binding energies (from -4.9 kcal/mol to -7.7 kcal/mol) using bioinformatics methods. Conclusion: Lamivudine, emtricitabine and raltegravir showed in vitro antiviral effects against the D614G strain of SARS-CoV-2. Raltegravir was the compound with the greatest in vitro antiviral potential at low concentrations, and it showed the highest binding affinities with crucial SARS-CoV-2 proteins during the viral replication cycle. However, further studies on the therapeutic utility of raltegravir in patients with COVID-19 are required.
引用
收藏
页码:20 / 40
页数:21
相关论文
共 84 条
  • [1] Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease
    Agostini, Maria L.
    Andres, Erica L.
    Sims, Amy C.
    Graham, Rachel L.
    Sheahan, Timothy P.
    Lu, Xiaotao
    Smith, Everett Clinton
    Case, James Brett
    Feng, Joy Y.
    Jordan, Robert
    Ray, Adrian S.
    Cihlar, Tomas
    Siegel, Dustin
    Mackman, Richard L.
    Clarke, Michael O.
    Baric, Ralph S.
    Denison, Mark R.
    [J]. MBIO, 2018, 9 (02):
  • [2] Antiretrovirals for Prophylaxis Against COVID-19: A Comprehensive Literature Review
    Alavian, Golbarg
    Kolahdouzan, Kasra
    Mortezazadeh, Masoud
    Torabi, Zahra Sadat
    [J]. JOURNAL OF CLINICAL PHARMACOLOGY, 2021, 61 (05) : 581 - 590
  • [3] Lopinavir-ritonavir and hydroxychloroquine for critically ill patients with COVID-19: REMAP-CAP randomized controlled trial
    Arabi, Yaseen M.
    Gordon, Anthony C.
    Derde, Lennie P. G.
    Nichol, Alistair D.
    Murthy, Srinivas
    Al Beidh, Farah
    Annane, Djillali
    Al Swaidan, Lolowa
    Beane, Abi
    Beasley, Richard
    Berry, Lindsay R.
    Bhimani, Zahra
    Bonten, Marc J. M.
    Bradbury, Charlotte A.
    Brunkhorst, Frank M.
    Buxton, Meredith
    Buzgau, Adrian
    Cheng, Allen
    De Jong, Menno
    Detry, Michelle A.
    Duffy, Eamon J.
    Estcourt, Lise J.
    Fitzgerald, Mark
    Fowler, Rob
    Girard, Timothy D.
    Goligher, Ewan C.
    Goossens, Herman
    Haniffa, Rashan
    Higgins, Alisa M.
    Hills, Thomas E.
    Horvat, Christopher M.
    Huang, David T.
    King, Andrew J.
    Lamontagne, Francois
    Lawler, Patrick R.
    Lewis, Roger
    Linstrum, Kelsey
    Litton, Edward
    Lorenzi, Elizabeth
    Malakouti, Salim
    McAuley, Daniel F.
    McGlothlin, Anna
    Mcguinness, Shay
    McVerry, Bryan J.
    Montgomery, Stephanie K.
    Morpeth, Susan C.
    Mouncey, Paul R.
    Orr, Katrina
    Parke, Rachael
    Parker, Jane C.
    [J]. INTENSIVE CARE MEDICINE, 2021, 47 (08) : 867 - 886
  • [4] HIV-1 Antiretroviral Drug Therapy
    Arts, Eric J.
    Hazuda, Daria J.
    [J]. COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2012, 2 (04):
  • [5] Characterization of the SARS-CoV-2 ExoN (nsp14ExoN-nsp10) complex: implications for its role in viral genome stability and inhibitor identification
    Baddock, Hannah T.
    Brolih, Sanja
    Yosaatmadja, Yuliana
    Ratnaweera, Malitha
    Bielinski, Marcin
    Swift, Lonnie P.
    Cruz-Migoni, Abimael
    Fan, Haitian
    Keown, Jeremy R.
    Walker, Alexander P.
    Morris, Garrett M.
    Grimes, Jonathan M.
    Fodor, Ervin
    Schofield, Christopher J.
    Gileadi, Opher
    McHugh, Peter J.
    [J]. NUCLEIC ACIDS RESEARCH, 2022, 50 (03) : 1484 - 1500
  • [6] Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model
    Beck, Bo Ram
    Shin, Bonggun
    Choi, Yoonjung
    Park, Sungsoo
    Kang, Keunsoo
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 784 - 790
  • [7] The Protein Data Bank
    Berman, HM
    Westbrook, J
    Feng, Z
    Gilliland, G
    Bhat, TN
    Weissig, H
    Shindyalov, IN
    Bourne, PE
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 235 - 242
  • [8] BIOVIA DS, DISC STUD VIS SOFTW
  • [9] Cao B, 2020, NEW ENGL J MED, V382, P1787, DOI [10.1056/NEJMoa2001282, 10.1056/NEJMc2008043]
  • [10] Chien MC, 2020, J PROTEOME RES, V19, P4690, DOI [10.1021/acs.jproteome.0c00392, 10.1101/2020.03.18.997585]