An Origami-Inspired Negative Pressure Folding Actuator Coupling Hardness with Softness

被引:1
|
作者
Shao, Zhaowen [1 ]
Zhao, Wentao [1 ]
Zuo, Zhaotian [1 ]
Li, Jun [1 ]
Chen, I-Ming [2 ]
机构
[1] Southeast Univ, Minist Educ, Key Lab Measurement & Control CSE, Nanjing 210096, Peoples R China
[2] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
flexible actuator; origami; folding structure; output force; force retention; two-way locomotion; explosive force; PNEUMATIC ARTIFICIAL MUSCLES; DESIGN; DRIVEN; ROBOT;
D O I
10.3390/act12010035
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Soft actuators have a high potential for the creative design of flexible robots and safe human-robot interaction. So far, significant progress has been made in soft actuators' flexibility, deformation amplitude, and variable stiffness. However, there are still deficiencies in output force and force retention. This paper presents a new negative pressure-driven folding flexible actuator inspired by origami. First, we establish a theoretical model to predict such an actuator's output force and displacement under given pressures. Next, five actuators are fabricated using three different materials and evaluated on a test platform. The test results reveal that one actuator generates a maximum pull force of 1125.9 N and the maximum push force of 818.2 N, and another outputs a full force reaching 600 times its weight. Finally, demonstrative experiments are conducted extensively, including stretching, contracting, clamping, single-arm power assistance, and underwater movement. They show our actuators' performance and feature coupling hardness with softness, e.g., large force output, strong force retention, two-way working, and even muscle-like explosive strength gaining. The existing soft actuators desire these valuable properties.
引用
收藏
页数:20
相关论文
共 17 条
  • [1] Origami-Inspired Soft Twisting Actuator
    Li, Diancheng
    Fan, Dongliang
    Zhu, Renjie
    Lei, Qiaozhi
    Liao, Yuxuan
    Yang, Xin
    Pan, Yang
    Wang, Zheng
    Wu, Yang
    Liu, Sicong
    Wang, Hongqiang
    SOFT ROBOTICS, 2023, 10 (02) : 395 - 409
  • [2] Origami-inspired sacrificial joints for folding compliant mechanisms
    Nelson, Todd G.
    Avila, Alex
    Howell, Larry L.
    Herder, Just L.
    Machekposhti, Davood Farhadi
    MECHANISM AND MACHINE THEORY, 2019, 140 : 194 - 210
  • [3] Design and Analysis of a Hybrid Actuator With Resilient Origami-Inspired Hinges
    Yoo, Seunghoon
    Park, Hyunjun
    Cha, Youngsu
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (03): : 2128 - 2135
  • [4] From rigid to amorphous folding behavior in origami-inspired metamaterials with bistable hinges
    Iniguez-Rabago, Agustin
    Overvelde, Johannes T. B.
    EXTREME MECHANICS LETTERS, 2022, 56
  • [5] A Miniature Soft Sensor with Origami-Inspired Self-Folding Parallel Mechanism
    Shi, Yongqi
    Wang, Gang
    Sun, Wenguang
    Ya, Yunfeng
    Liu, Shuhan
    Fang, Jiongjie
    Yuan, Feiyang
    Duo, Youning
    Wen, Li
    MICROMACHINES, 2022, 13 (08)
  • [6] Evolution from Telescoping to Bending: An Origami-Inspired Flexible Bending Actuator
    Shao, Zhaowen
    Zhao, Wentao
    Zuo, Zhaotian
    Li, Jun
    APPLIED BIONICS AND BIOMECHANICS, 2023, 2023
  • [7] Folding Responses of Origami-Inspired Structures Connected by Groove Compliant Joints
    Zhang, Qian
    Li, Yuanyuan
    Kueh, Ahmad B. H.
    Qian, Zelun
    Cai, Jianguo
    JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME, 2022, 14 (03):
  • [8] Folding of sealed origami-inspired capsule with rigid panels and hyperelastic hinges
    Xiao, Liping
    Hong, Yilun
    Wang, Ke
    Zhao, Haifeng
    THIN-WALLED STRUCTURES, 2023, 190
  • [9] Predicting origami-inspired programmable self-folding of hydrogel trilayers
    An, Ning
    Li, Meie
    Zhou, Jinxiong
    SMART MATERIALS AND STRUCTURES, 2016, 25 (11)
  • [10] Modeling and Characterizing Two Dielectric Elastomer Folding Actuators for Origami-Inspired Robot
    Li, Yang
    Zhang, Ting
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 11775 - 11782