Edge coloring graphs with large minimum degree

被引:3
作者
Plantholt, Michael J. [1 ]
Shan, Songling [1 ]
机构
[1] Illinois State Univ, Dept Math, Normal, IL 61790 USA
基金
美国国家科学基金会;
关键词
1-factorization; chromatic index; overfull conjecture; overfull graph; REGULAR GRAPHS; VERTICES;
D O I
10.1002/jgt.22889
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph with maximum degree Delta(G). A subgraph H of G is overfull if.[E (H)] >Delta(G).[V (H)]/2.. Chetwynd and Hilton in 1986 conjectured that a graph G with Delta(G) >IV (G)1/3 has chromatic index Delta(G) if and only if G contains no overfull subgraph. The best previous results supporting this conjecture have been obtained for regular graphs. For example, Perkovic and Reed verified the conjecture for large regular graphs G with degree arbitrarily close to IV (G). /2. We provide a similar result for general graphs asymptotically, showing that for any given 0 < epsilon < 1, there exists a positive integer n(0) such that the following statement holds: if G is a graph on 2n >= n(0) vertices with minimum degree at least (1 +epsilon) n, then G has chromatic index Delta(G) if and only if G contains no overfull subgraph.
引用
收藏
页码:611 / 632
页数:22
相关论文
共 26 条
[1]  
[Anonymous], 1972, J I MATH APPL
[2]  
Bondy J. A., 1976, Graph theory with applications
[3]  
Chetwynd A.G., 1989, ANN DISCRETE MATH, V41, P91
[4]   1-FACTORIZING REGULAR GRAPHS OF HIGH DEGREE - AN IMPROVED BOUND [J].
CHETWYND, AG ;
HILTON, AJW .
DISCRETE MATHEMATICS, 1989, 75 (1-3) :103-112
[5]   STAR MULTIGRAPHS WITH 3 VERTICES OF MAXIMUM DEGREE [J].
CHETWYND, AG ;
HILTON, AJW .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1986, 100 :303-317
[6]   ON EDGE COLORING BIPARTITE GRAPHS [J].
COLE, R ;
HOPCROFT, J .
SIAM JOURNAL ON COMPUTING, 1982, 11 (03) :540-546
[7]   Proof of the 1-Factorization and Hamilton Decomposition Conjectures [J].
Csaba, Bela ;
Kuhn, Daniela ;
Lo, Allan ;
Osthus, Deryk ;
Treglown, Andrew .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 244 (1154) :1-+
[8]  
Dirac G.A., 1952, P LOND MATH SOC, V2, P69, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
[9]  
Fiorini S., 1977, RES NOTES MATHS
[10]   Optimal path and cycle decompositions of dense quasirandom graphs [J].
Glock, Stefan ;
Kuehn, Daniela ;
Osthus, Deryk .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 118 :88-108