Locally torsion-free modules

被引:4
作者
Jayaram, C. [1 ]
Ugurlu, Emel Aslankarayigit [2 ]
Tekir, Unsal [2 ]
Koc, Suat [2 ]
机构
[1] Univ West Indies, Dept CMP, POB 64, Bridgetown, Barbados
[2] Marmara Univ, Dept Math, TR-34722 Istanbul, Turkey
关键词
von Neumann regular rings; Baer rings; quasi-regular rings; locally integral domains; von Neumann regular modules; Baer modules; quasi-regular modules; torsionfree modules; locally torsion-free modules; normal modules;
D O I
10.1142/S0219498823501037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recall that a commutative ring R is a locally integral domain if its localization Rp is an integral domain for each prime ideal P of R. Our aim in this paper is to extend the notion of locally integral domains to modules. Let R be a commutative ring with a unity and M a nonzero unital R-module. M is called a locally torsion-free module if the localization M p of M is a torsion-free Rp-module for each prime ideal P of R. In addition to giving many properties of locally torsion-free modules, we use them to characterize Baer modules, torsion free modules, and von Neumann regular rings.
引用
收藏
页数:14
相关论文
共 23 条
[1]   THE SET OF TORSION ELEMENTS OF A MODULE [J].
Anderson, D. D. ;
Chun, Sangmin .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (04) :1835-1843
[2]   IDEALIZATION OF A MODULE [J].
Anderson, D. D. ;
Winders, Michael .
JOURNAL OF COMMUTATIVE ALGEBRA, 2009, 1 (01) :3-56
[3]   On S-multiplication modules [J].
Anderson, Dan D. ;
Arabaci, Tarik ;
Tekir, Unsal ;
Koc, Suat .
COMMUNICATIONS IN ALGEBRA, 2020, 48 (08) :3398-3407
[4]  
Atiyah M. F., 1969, Introduction to commutative algebra
[5]   MULTIPLICATION MODULES [J].
BARNARD, A .
JOURNAL OF ALGEBRA, 1981, 71 (01) :174-178
[6]  
Baser M, 2006, NOTE MAT, V26, P173
[7]  
Bilgin Z, 2019, ALGEBRA DISCRET MATH, V28, P171
[8]   MULTIPLICATION MODULES [J].
ELBAST, ZA ;
SMITH, PF .
COMMUNICATIONS IN ALGEBRA, 1988, 16 (04) :755-779
[9]   COMMUTATIVE PP RINGS [J].
EVANS, MW .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 41 (03) :687-&
[10]   Strongly prime ideals and strongly zero-dimensional rings [J].
Gottlieb, Christian .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (10)