Hyperspectral images classification based on multiple kernel learning using SWT and KMNF with few training samples

被引:4
作者
Hassanzadeh, Shirin [1 ]
Danyali, Habibollah [1 ]
Helfroush, Mohammad Sadegh [1 ]
机构
[1] Shiraz Univ Technol, Dept Elect Engn, Shiraz, Iran
关键词
Classification; hyperspectral images (HSIs); multiple kernel learning (MKL); stationary wavelet transform (SWT); kernel minimum noise fraction (KMNF); WAVELET TRANSFORM; REPRESENTATION;
D O I
10.1080/14498596.2022.2097962
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
In this paper, a new techniquebased on Multiple kernel learning (MKL) with just a few training samples is proposed for HSI classification utilising stationary wavelet transform (SWT) and kernel minimal noise fraction (KMNF). 2D-SWT is applied to each spectral band to discriminate spatial information, and feature sets are created by concatenating wavelet bands. The base kernels associated with each feature set are constructed, and the optimum kernel for maximum separability is learned. The experimental results indicate that the suggested approach provides high accuracy with a low number of training samples and outperforms state-of-the-art MKL-based classifiers with no increase in computing complexity.
引用
收藏
页码:593 / 613
页数:21
相关论文
共 43 条
[1]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[2]   Hyperspectral Remote Sensing Classifications: A Perspective Survey [J].
Chutia, D. ;
Bhattacharyya, D. K. ;
Sarma, K. K. ;
Kalita, R. ;
Sudhakar, S. .
TRANSACTIONS IN GIS, 2016, 20 (04) :463-490
[3]   GEOMETRICAL AND STATISTICAL PROPERTIES OF SYSTEMS OF LINEAR INEQUALITIES WITH APPLICATIONS IN PATTERN RECOGNITION [J].
COVER, TM .
IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (03) :326-&
[4]   Hyperspectral image classification based on multiple kernel mutual learning [J].
Cui, Binge ;
Zhong, Liwei ;
Yin, Bei ;
Ren, Guangbo ;
Lu, Yan .
INFRARED PHYSICS & TECHNOLOGY, 2019, 99 :113-122
[5]   Classification of Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent Component Analysis [J].
Dalla Mura, Mauro ;
Villa, Alberto ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Bruzzone, Lorenzo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (03) :542-546
[6]   The redundant discrete wavelet transform and additive noise [J].
Fowler, JE .
IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (09) :629-632
[7]  
Gamba P, 2004, INT GEOSCI REMOTE SE, P69
[8]   Optimized Kernel Minimum Noise Fraction Transformation for Hyperspectral Image Classification [J].
Gao, Lianru ;
Zhao, Bin ;
Jia, Xiuping ;
Liao, Wenzhi ;
Zhang, Bing .
REMOTE SENSING, 2017, 9 (06)
[9]   Multi-spectral and panchromatic image fusion approach using stationary wavelet transform and swarm flower pollination optimization for remote sensing applications [J].
Gharbia, Reham ;
Hassanien, Aboul Ella ;
El-Baz, Ali Hassan ;
Elhoseny, Mohamed ;
Gunasekaran, M. .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 88 :501-511
[10]   A wavelet-based classification of hyperspectral images using Schroedinger eigenmaps [J].
Ghasrodashti, Elham Kordi ;
Helfroush, Mohammad Sadegh ;
Danyali, Habibollah .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (12) :3608-3634