A zero-noise limit to a symmetric system of conservation laws

被引:0
作者
Markovic, Branko [1 ]
Nedeljkov, Marko [1 ]
机构
[1] Univ Novi Sad, Fac Sci, Dept Math & Informat, Trg Dositeja Obradovica 4, Novi Sad 21000, Serbia
关键词
Conservation laws; stochastic noise; vanishing viscosity; zero-noise limit;
D O I
10.1080/07362994.2021.1990778
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a symmetric system of conservation laws and its stochastic approximation with stochastic multiplicative noise. Using the vanishing viscosity with the zero-noise limit we obtain a deterministic weak solution for some time interval.
引用
收藏
页码:102 / 114
页数:13
相关论文
共 21 条
[1]   Zero-noise solutions of linear transport equations without uniqueness: an example [J].
Attanasio, Stefano ;
Flandoli, Franco .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (13-14) :753-756
[2]   STOCHASTIC ISENTROPIC EULER EQUATIONS [J].
Berthelin, Florent ;
Vovelle, Julien .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2019, 52 (01) :181-254
[3]   Stochastic Navier-Stokes Equations and Related Models [J].
Bianchi, Luigi Amedeo ;
Flandoli, Franco .
MILAN JOURNAL OF MATHEMATICS, 2020, 88 (01) :225-246
[4]  
Breit D., 2018, Stochastically forced compressible fluid flows
[5]   Stationary solutions to the compressible Navier-Stokes system driven by stochastic forces [J].
Breit, Dominic ;
Feireisl, Eduard ;
Hofmanova, Martina ;
Maslowski, Bohdan .
PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (3-4) :981-1032
[6]   Stochastic compressible Euler equations and inviscid limits [J].
Breit, Dominic ;
Mensah, Prince Romeo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 184 :218-238
[7]   Local strong solutions to the stochastic compressible Navier-Stokes system [J].
Breit, Dominic ;
Feireisl, Eduard ;
Hofmanova, Martina .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (02) :313-345
[8]   Incompressible Limit for Compressible Fluids with Stochastic Forcing [J].
Breit, Dominic ;
Feireisl, Eduard ;
Hofmanova, Martina .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (02) :895-926
[9]   NONLINEAR EVOLUTION OF PARALLEL-PROPAGATING HYDROMAGNETIC-WAVES [J].
COHEN, RH ;
KULSRUD, RM .
PHYSICS OF FLUIDS, 1974, 17 (12) :2215-2225
[10]  
Dafermos C. M., 2005, Hyperbolic Conservation Laws in Continuum Physics, V3, DOI DOI 10.1007/978-3-662-49451-6