The variable sample size and sampling interval run sum Max chart

被引:0
|
作者
Antzoulakos, D. L. [1 ]
Fountoukidis, K. G. [1 ]
Rakitzis, A. C. [1 ,2 ]
机构
[1] Univ Piraeus, Dept Stat & Insurance Sci, Piraeus, Greece
[2] Univ Piraeus, Dept Stat & Insurance Sci, Piraeus 18534, Greece
来源
QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT | 2025年 / 22卷 / 02期
关键词
Adjusted average time to signal; average sample size; average sampling interval; Markov chain; single control chart; statistical process control; DESIGN;
D O I
10.1080/16843703.2024.2315837
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A variable sample size and sampling interval run sum Max chart (VSSI-RSMax) is proposed to efficiently monitor the mean and/or variability of a process. The VSSI-RSMax chart varies the sample size and sampling interval of the RSMax chart according to the current cumulative score. A Markov chain method is used to evaluate the performance of the proposed chart in terms of the average time to signal (ATS), the adjusted average time to signal (AATS), and the expected AATS (EAATS). The VSSI-RSMax chart is compared with other competitive single control charts, such as the standard fixed sample size and sampling interval (FSSI) Max chart, the VSSI-Max chart, the FSSI-RSMax chart, the FSSI Max-EWMA and the FSSI Max-CUSUM. Also, the implementation of the VSSI-RSMax chart in practice is demonstrated with an illustrative example.
引用
收藏
页码:321 / 344
页数:24
相关论文
共 50 条
  • [31] An analysis of the run sum control chart
    Champ, CW
    Rigdon, SE
    JOURNAL OF QUALITY TECHNOLOGY, 1997, 29 (04) : 407 - 417
  • [32] Variable Sampling Interval Cumulative Count of Conforming Chart with Runs Rules
    Lee, Ming Ha
    Khoo, Michael B. C.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (09) : 2410 - 2430
  • [33] The variable sampling interval control chart for finite-horizon processes
    Nenes, George
    Castagliola, Philippe
    Celano, Giovanni
    Panagiotidou, Sofia
    IIE TRANSACTIONS, 2014, 46 (10) : 1050 - 1065
  • [34] Monitoring the Coefficient of Variation Using a Variable Sampling Interval EWMA Chart
    Yeong, W. C.
    Khoo, Michael B. C.
    Tham, L. K.
    Teoh, W. L.
    Rahim, M. A.
    JOURNAL OF QUALITY TECHNOLOGY, 2017, 49 (04) : 380 - 401
  • [35] A median run length-based double-sampling chart with estimated parameters for minimizing the average sample size
    Teoh, W. L.
    Khoo, Michael B. C.
    Castagliola, Philippe
    Chakraborti, S.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 80 (1-4) : 411 - 426
  • [36] Optimal Designs of the Variable Sample Size (X)over-bar Chart Based on Median Run Length and Expected Median Run Length
    Teoh, W. L.
    Chong, J. K.
    Khoo, M. B. C.
    Castagliola, P.
    Yeong, W. C.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2017, 33 (01) : 121 - 134
  • [37] Optimal design of the variable sampling size and sampling interval variable dimension T2 control chart for monitoring the mean vector of a multivariate normal process
    Shokrizadeh, Reza
    Saghaei, Abbas
    Amirzadeh, Vahid
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (02) : 329 - 337
  • [38] An adaptive multivariate EWMA mean chart with variable sample sizes and/or variable sampling intervals
    Haq, Abdul
    Khoo, Michael B. C.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2022, 38 (07) : 3322 - 3341
  • [39] The variable sample size variable dimension T2 control chart
    Aparisi, Francisco
    Epprecht, Eugenio
    Carrion, Andres
    Ruiz, Omar
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2014, 52 (02) : 368 - 383
  • [40] A combined variable sampling interval and double sampling control chart with auxiliary information for the process mean
    Umar, Adamu A.
    Khoo, Michael B. C.
    Saha, Sajal
    Haq, Abdul
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2020, 42 (06) : 1151 - 1165