The variable sample size and sampling interval run sum Max chart

被引:1
作者
Antzoulakos, D. L. [1 ]
Fountoukidis, K. G. [1 ]
Rakitzis, A. C. [1 ,2 ]
机构
[1] Univ Piraeus, Dept Stat & Insurance Sci, Piraeus, Greece
[2] Univ Piraeus, Dept Stat & Insurance Sci, Piraeus 18534, Greece
来源
QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT | 2025年 / 22卷 / 02期
关键词
Adjusted average time to signal; average sample size; average sampling interval; Markov chain; single control chart; statistical process control; DESIGN;
D O I
10.1080/16843703.2024.2315837
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A variable sample size and sampling interval run sum Max chart (VSSI-RSMax) is proposed to efficiently monitor the mean and/or variability of a process. The VSSI-RSMax chart varies the sample size and sampling interval of the RSMax chart according to the current cumulative score. A Markov chain method is used to evaluate the performance of the proposed chart in terms of the average time to signal (ATS), the adjusted average time to signal (AATS), and the expected AATS (EAATS). The VSSI-RSMax chart is compared with other competitive single control charts, such as the standard fixed sample size and sampling interval (FSSI) Max chart, the VSSI-Max chart, the FSSI-RSMax chart, the FSSI Max-EWMA and the FSSI Max-CUSUM. Also, the implementation of the VSSI-RSMax chart in practice is demonstrated with an illustrative example.
引用
收藏
页码:321 / 344
页数:24
相关论文
共 45 条
[1]   Run sum control chart for monitoring the ratio of population means of a bivariate normal distribution [J].
Abubakar, Sani Salihu ;
Khoo, Michael B. C. ;
Saha, Sajal ;
Teoh, Wei Lin .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (13) :4559-4588
[2]   New EWMA S2 control charts for monitoring of process dispersion [J].
Abujiya, M. R. ;
Lee, M. H. ;
Riaz, M. .
SCIENTIA IRANICA, 2017, 24 (01) :378-389
[3]   The Run Sum R Chart with Fast Initial Response [J].
Acosta-Mejia, Cesar ;
Pignatiello, Joseph J., Jr. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (05) :921-932
[4]   Two-Sided Charts for Monitoring Nonconforming Parts per Million [J].
Acosta-Mejia, Cesar A. .
QUALITY ENGINEERING, 2013, 25 (01) :34-45
[5]   A phase II run sum chart for monitoring process mean and variability [J].
Antzoulakos, D. L. ;
Fountoukidis, K. G. ;
Rakitzis, A. C. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (13) :2276-2296
[6]   An analysis of the run sum control chart [J].
Champ, CW ;
Rigdon, SE .
JOURNAL OF QUALITY TECHNOLOGY, 1997, 29 (04) :407-417
[7]  
Chen GM, 1998, STAT SINICA, V8, P263
[8]  
Chen GM, 2001, J QUAL TECHNOL, V33, P223
[9]   An improved variable parameter mean square error control chart [J].
Chen, Pei-Le .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (16) :5752-5766
[10]   The MAX-CUSUM Chart [J].
Cheng, Smiley W. ;
Thaga, Keoagile .
FRONTIERS IN STATISTICAL QUALITY CONTROL 9, 2010, :85-+