BoDiffusion: Diffusing Sparse Observations for Full-Body Human Motion Synthesis

被引:2
作者
Castillo, Angela [1 ]
Escobar, Maria [1 ]
Jeanneret, Guillaume [2 ]
Pumarola, Albert [3 ]
Arbelaez, Pablo [1 ]
Thabet, Ali [3 ]
Sanakoyeu, Artsiom [3 ]
机构
[1] Univ Los Andes, Ctr Res & Format Artificial Intelligence, Santiago, Chile
[2] Univ Caen Normandie, ENSICAEN, CNRS, Caen, France
[3] Meta AI, New York, NY USA
来源
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW | 2023年
关键词
D O I
10.1109/ICCVW60793.2023.00456
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mixed reality applications require tracking the user's full-body motion to enable an immersive experience. However, typical head-mounted devices can only track head and hand movements, leading to a limited reconstruction of full-body motion due to variability in lower body configurations. We propose BoDiffusion - a generative diffusion model for motion synthesis to tackle this under-constrained reconstruction problem. We present a time and space conditioning scheme that allows BoDiffusion to leverage sparse tracking inputs while generating smooth and realistic full-body motion sequences. To the best of our knowledge, this is the first approach that uses the reverse diffusion process to model full-body tracking as a conditional sequence generation task. We conduct experiments on the large-scale motion-capture dataset AMASS and show that our approach outperforms the state-of-the-art approaches by a significant margin in terms of full-body motion realism and joint reconstruction error.
引用
收藏
页码:4223 / 4233
页数:11
相关论文
共 60 条
[1]  
Ahn H, 2018, IEEE INT CONF ROBOT, P5915
[2]  
Aliakbarian Sadegh, 2022, IEEE C COMPUT VIS PA, P13253
[3]  
Carnegie Mellon University, CMU MoCap Dataset.
[4]   Learning to Fit Morphable Models [J].
Choutas, Vasileios ;
Bogo, Federica ;
Shen, Jingjing ;
Valentin, Julien .
COMPUTER VISION - ECCV 2022, PT VI, 2022, 13666 :160-179
[5]  
Dhariwal Prafulla, 2021, NEURIPS
[6]  
Dittadi Andrea., 2021, P IEEECVF INT C COMP, P11687
[7]   Avatars Grow Legs: Generating Smooth Human Motion from Sparse Tracking Inputs with Diffusion Model [J].
Du, Yuming ;
Kips, Robin ;
Pumarola, Albert ;
Starke, Sebastian ;
Thabet, Ali ;
Sanakoyeu, Artsiom .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, :481-490
[8]  
Gafni Oran, 2022, ECCV
[9]  
He Junxian, 2018, INT C LEARN REPR
[10]  
He Zhengfu, 2022, ARXIV221115029