Active Learning and Transfer Learning for Document Segmentation

被引:1
作者
Kiranov, D. M. [1 ,2 ]
Ryndin, M. A. [1 ]
Kozlov, I. S. [1 ]
机构
[1] Russian Acad Sci, Ivannikov Inst Syst Programming, Ul Solzhenitsyna 25, Moscow 109004, Russia
[2] Moscow Inst Phys & Technol, Inst skii Per 9, Dolgoprudnyi 141700, Moscow Oblast, Russia
关键词
active learning; transfer learning; and image segmentation;
D O I
10.1134/S0361768823070046
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we investigate the effectiveness of classical approaches to active learning in the problem of document segmentation with the aim of reducing the size of the training sample. A modified approach to selection of document images for labeling and subsequent model training is presented. The results of active learning are compared to those of transfer learning on fully labeled data. The paper also investigates how the problem domain of a training set, on which a model is initialized for transfer learning, affects the subsequent uptraining of the model.
引用
收藏
页码:566 / 573
页数:8
相关论文
共 15 条
[1]   Active Learning for Deep Detection Neural Networks [J].
Aghdam, Hamed H. ;
Gonzalez-Garcia, Abel ;
van de Weijer, Joost ;
Lopez, Antonio M. .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3671-3679
[2]  
[Беляева О.В. Belyaeva O.V.], 2020, [Труды Института системного программирования РАН, Proceedings of the Institute for System Programming of the RAS, Trudy Instituta sistemnogo programmirovaniya RAN], V32, P189, DOI 10.15514/ISPRAS-2020-32(4)-14
[3]   Active Learning for Deep Object Detection [J].
Brust, Clemens-Alexander ;
Kaeding, Christoph ;
Denzler, Joachim .
PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, :181-190
[4]  
Culotta A, 2005, P 20 NATL C ARTIFICI, P746
[5]  
Dagan I., 1995, Machine Learning. Proceedings of the Twelfth International Conference on Machine Learning, P150
[6]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
[7]   Localization-Aware Active Learning for Object Detection [J].
Kao, Chieh-Chi ;
Lee, Teng-Yok ;
Sen, Pradeep ;
Liu, Ming-Yu .
COMPUTER VISION - ACCV 2018, PT VI, 2019, 11366 :506-522
[8]   Microsoft COCO: Common Objects in Context [J].
Lin, Tsung-Yi ;
Maire, Michael ;
Belongie, Serge ;
Hays, James ;
Perona, Pietro ;
Ramanan, Deva ;
Dollar, Piotr ;
Zitnick, C. Lawrence .
COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 :740-755
[9]  
Lv X., 2020, Sensors, V20
[10]   Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks [J].
Ren, Shaoqing ;
He, Kaiming ;
Girshick, Ross ;
Sun, Jian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) :1137-1149