Exploring the mechanism of Erchen decoction in the treatment of atherosclerosis based on network pharmacology and molecular docking

被引:3
|
作者
Li, Wenwen [1 ]
Zhang, Guowei [1 ]
Zhao, Zhenfeng [1 ]
Zuo, Yaoyao [1 ]
Sun, Zhenhai [1 ]
Chen, Shouqiang [1 ]
机构
[1] Shandong Univ Tradit Chinese Med, Sch Clin Med 2, Jinan, Shandong, Peoples R China
关键词
atherosclerosis; Erchen decoction; molecular docking; network pharmacology; OBACUNONE; INFLAMMATION; EXPRESSION; CYTOKINES; DISEASE; OBESITY; STRESS; MICE;
D O I
10.1097/MD.0000000000035248
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background:Atherosclerosis (AS) is the cause of most cardiovascular diseases and imposes a huge economic burden on society. Erchen decoction (ECD) is an effective formula for treating AS, but its therapeutic mechanism remains unclear. This study will explore the mechanism of ECD mechanism for treating AS using network pharmacology and molecular docking.Methods:We searched ECD chemical composition information and related targets via Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and SwissTargetPrediction databases, and gene names correction was performed using the UniProt database. AS-related targets were retrieved from OMIM, GeneCards, and DrugBank databases, and Venny 2.1 were used for intersection analysis. Protein-protein interaction network was constructed by the STRING database, and an interactive network of the drug-component-target-disease was drawn using the Cytoscape 3.9.0 software. Gene ontology and Kyoto Gene and Genome Encyclopedia enrichment analysis were performed by the DAVID database, and molecular docking validation of vital active ingredients and action targets of ECD was performed using AutoDock Vina software.Results:The 127 active components of ECD act on AS by regulating 231 targets and 151 pathways. The 6 core components are quercetin, polyporenic acid C, 18 alpha-hydroxyglycyrrhetic acid, glyuranolide, 3beta-hydroxychloroxy-24-methylene-8-lanostene-21-oic acid, and obacunone. They may regulate AS by regulating core target genes, such as JUN, SRC, AKT1, PTGS2, ESR1, AR, MAPK1, MAPK3, and RELA, and acting on multiple vital pathways, such as AGE-RAGE signaling pathway in diabetic complications, Lipid and AS, and Fluid shear stress and AS. Molecular docking showed that the selected target protein had good binding activity to the active ingredient.Conclusions:ECD has the characteristics of multi-components, multi-targets and multi-pathways in the treatment of AS. The results provide a theoretical basis for the clinical application of ECD and its mechanism.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Mechanism of Simiao Decoction in the treatment of atherosclerosis based on network pharmacology prediction and molecular docking
    Li, Qian
    Chai, Yihui
    Li, Wen
    Guan, Liancheng
    Fan, Yizi
    Chen, Yunzhi
    MEDICINE, 2023, 102 (36) : E35109
  • [2] Exploring the mechanism of Suanzaoren decoction in treatment of insomnia based on network pharmacology and molecular docking
    Wang, Shuxiao
    Zhao, Yan
    Hu, Xingang
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [3] Exploring the mechanism of Xiaoqinglong decoction in the treatment of infantile asthma based on network pharmacology and molecular docking
    Chen, Daman
    Chen, Qiqi
    Zhao, Kaibo
    Guo, Yongqi
    Huang, Yuxin
    Yuan, Zehuan
    Cai, Yujia
    Li, Sitong
    Xu, Jiarong
    Lin, Xiaohong
    MEDICINE, 2023, 102 (02) : E32623
  • [4] Network pharmacology and molecular docking-based study on exploring the potential mechanism of Lycium barbarum L: In the treatment of atherosclerosis
    Qin, Xinchen
    Xie, Zikai
    Chen, Xi
    Wang, Xiaoxuan
    Ma, Lijuan
    MEDICINE, 2023, 102 (44) : E35734
  • [5] Exploring the mechanism of avenanthramide in the treatment of atherosclerosis based on network pharmacology and molecular docking: An observational study
    Wang, Zhigang
    Fang, Longzhi
    Han, Meng
    Liu, Kangzhe
    Zheng, Yuanmei
    Zhan, Yibei
    MEDICINE, 2024, 103 (51) : e40932
  • [6] Exploring the Mechanism of Bufei Decoction in the Treatment of Bronchial Asthma Based on Network Pharmacology and Molecular Docking
    Han, Yong-Guang
    Lv, Xing
    Tan, Ya-Lan
    Ding, Yun-Shan
    Zhang, Chao-Yun
    Bian, Hua
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2024, : 768 - 780
  • [7] Exploring the potential molecular mechanism of Gualou Guizhi decoction in the treatment of rheumatoid arthritis based on network pharmacology and molecular docking
    Duan, Zhihao
    Jin, Can
    Ma, Shuai
    Liu, Jinlang
    Li, Shigang
    Zhou, You
    MEDICINE, 2024, 103 (01) : E36844
  • [8] Exploring the Potential Molecular Mechanism of Sijunzi Decoction in the Treatment of Non-Segmental Vitiligo Based on Network Pharmacology and Molecular Docking
    Du, Ziwei
    Wang, Hepeng
    Gao, Yang
    Zheng, Shumao
    Kou, Xiaoli
    Sun, Guoqiang
    Song, Jinxian
    Dong, Jingfei
    Wang, Genhui
    CLINICAL COSMETIC AND INVESTIGATIONAL DERMATOLOGY, 2023, 16 : 821 - 836
  • [9] Potential active compounds and molecular mechanism of Xuefu Zhuyu decoction for atherosclerosis, based on network pharmacology and molecular docking
    Li, Yingyun
    Liu, Boyu
    Liu, Lin
    Xu, Qing
    Shen, Quan
    Li, Weikang
    Zhao, Jingshan
    MEDICINE, 2022, 101 (32) : E29654
  • [10] Observational study on the potential mechanism of Sanao decoction in the treatment of asthma based on network pharmacology and molecular docking
    Chen, Wenpei
    Liu, Qiwei
    Gao, Xuyan
    Geng, Yingbao
    Kan, Hongxing
    MEDICINE, 2024, 103 (12) : E37592