Low-temperature strain-sensitive sensor based on cellulose-based ionic conductive hydrogels with moldable and self-healing properties

被引:8
|
作者
Chen, Minzhi [1 ]
Quan, Qi
You, Zhenping
Dong, Yue
Zhou, Xiaoyan [1 ]
机构
[1] Nanjing Forestry Univ, Coll Mat Sci & Engn, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogel; Anti-freezing; Cellulose; INTERPENETRATING POLYMER NETWORK; TRANSPARENT; LIGHT; GELS;
D O I
10.1016/j.ijbiomac.2023.127396
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bioelectronics based on high-performance conductive ionic hydrogels, which can create novel technological interfaces with the human body, have attracted significant interest from both academia and industry. However, it is still a challenge to fabricate hydrogel sensor with integration of good mechanical properties, fast self-healing ability and flexible strain sensitivity below 0 degrees C. In this paper, we present a moldable, self-healing and adhesive cellulose-based ionic conductive hydrogel with strain-sensitivity, which was prepared by forming dualcrosslinked networks using poly(vinyl alcohol) (PVA) with borax, calcium chloride (CaCl2), zinc chloride (ZnCl2) and 2,2,6,6-tetramethylpiperidine-1-oxyl oxidized cellulose nanofibril (TCNF). The hydrogel exhibited fast self-healing within 10 s, moderate modulus of 5.13 kPa, high elongation rate of 1500 % and excellent adhesion behavior on various substrates. Due to multiple hydrogen bonding and the presence of CaCl2 and ZnCl2, the hydrogel presented a reduced freezing point as low as -41.1 degrees C, which enabled its application as a lowtemperature strain sensor. The proposed hydrogel provides a simple and facile method for fabricating multifunctional hydrogels that can be used as suitable strain sensors for applications such as wearable electronic sensor, soft robotics and electronic skins in a wide temperature range.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Hydroxyethyl cellulose-based electrically conductive, mechanically resistant, strain-sensitive self-healing hydrogels
    Hussain, Imtiaz
    Ma, Xiaofeng
    Wu, Linlin
    Luo, Zhenyang
    CELLULOSE, 2022, 29 (10) : 5725 - 5743
  • [2] Hydroxyethyl cellulose-based electrically conductive, mechanically resistant, strain-sensitive self-healing hydrogels
    Imtiaz Hussain
    Xiaofeng Ma
    Linlin Wu
    Zhenyang Luo
    Cellulose, 2022, 29 : 5725 - 5743
  • [3] Ultra-stretchable, fast self-healing, adhesive, and strain-sensitive wearable sensors based on ionic conductive hydrogels
    Ren, Jie
    Zhang, Wenjing
    Li, Ruirui
    Zhang, Minmin
    Li, Yan
    Yang, Wu
    NEW JOURNAL OF CHEMISTRY, 2024, : 11705 - 11716
  • [4] Self-healing cellulose-based flexible sensor: A review
    Zhang, Yue-hong
    Lei, Qin-yang
    Liu, Rui-jing
    Zhang, Lei
    Lyu, Bin
    Liu, Lei-peng
    Ma, Jian-zhong
    INDUSTRIAL CROPS AND PRODUCTS, 2023, 206
  • [5] Self-healing and photoluminescent carboxymethyl cellulose-based hydrogels
    Chen, Yong Mei
    Sun, Lei
    Yang, Shao An
    Shi, Lei
    Zheng, Wen Jiang
    Wei, Zhao
    Hu, Chen
    EUROPEAN POLYMER JOURNAL, 2017, 94 : 501 - 510
  • [6] Ultrafast Self-Healing, Reusable, and Conductive Polysaccharide-Based Hydrogels for Sensitive Ionic Sensors
    Wang, Yanling
    Huang, Hailong
    Wu, Jieli
    Han, Lu
    Yang, Zhongli
    Jiang, Zhicheng
    Wang, Rui
    Huang, Zhijian
    Xu, Min
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (50) : 18506 - 18518
  • [7] Stretchable, self-healing, adhesive and anti-freezing ionic conductive cellulose-based hydrogels for flexible supercapacitors and sensors
    Chen, Lizhi
    Yin, Hongyan
    Liu, Fangfei
    Abdiryim, Tursun
    Xu, Feng
    You, Jiangan
    Chen, Jiaying
    Jing, Xinyu
    Li, Yancai
    Su, Mengyao
    Liu, Xiong
    CELLULOSE, 2024, 31 (18) : 11015 - 11033
  • [8] Mussel-Inspired Cellulose Nanocomposite Tough Hydrogels with Synergistic Self-Healing, Adhesive, and Strain-Sensitive Properties
    Shao, Changyou
    Wang, Meng
    Meng, Lei
    Chang, Huanliang
    Wang, Bo
    Xu, Feng
    Yang, Jun
    Wan, Pengbo
    CHEMISTRY OF MATERIALS, 2018, 30 (09) : 3110 - 3121
  • [9] Self-healing cellulose-based hydrogels: From molecular design to multifarious applications
    Yang, Liang
    Wang, Hong
    Yang, Yanning
    Li, Yanpeng
    CARBOHYDRATE POLYMERS, 2025, 347
  • [10] Self-healing, Stretchable, Temperature-Sensitive and Strain-Sensitive Hydrogel-based Flexible Sensors
    Zhao, Chun-Xia
    Guo, Min
    Mao, Jie
    Li, Yun-Tao
    Wu, Yuan-Peng
    Guo, Hua
    Xiang, Dong
    Li, Hui
    CHINESE JOURNAL OF POLYMER SCIENCE, 2023, 41 (03) : 334 - 344