Insights on the Cesaro operator: shift semigroups and invariant subspaces

被引:1
作者
Gallardo-Gutierrez, Eva A. [1 ,2 ]
Partington, Jonathan R. [3 ]
机构
[1] Univ Complutense Madrid, Fac Matemat, Dept Anal Matemat & Matemat Aplicada, Plaza Ciencias 3, Madrid 28040, Spain
[2] Inst Ciencias Matemat ICMAT, Madrid 28049, Spain
[3] Univ Leeds, Sch Math, Leeds LS2 9JT, England
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2024年 / 152卷 / 02期
关键词
TRANSLATION; THEOREM; SPACES;
D O I
10.1007/s11854-023-0305-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A closed subspace is invariant under the Cesaro operator C on the classical Hardy space H-2(D) if and only if its orthogonal complement is invariant under the C-0-semigroup of composition operators induced by the affine maps phi(t)(z)=e(-t)z+1-e(-t) for t >= 0 and z is an element of D. The corresponding result also holds in the Hardy spaces H-p(D) for 1 < p < infinity. Moreover, in the Hilbert space setting, by linking the invariant subspaces of C to the lattice of the closed invariant subspaces of the standard right-shift semigroup acting on a particular weighted L-2-space on the line, we exhibit a large class of non-trivial closed invariant subspaces and provide a complete characterization of the finite codimensional ones, establishing, in particular, the limits of such an approach towards describing the lattice of all invariant subspaces of C. Finally, we present a functional calculus argument which allows us to extend a recent result by Mashreghi, Ptak and Ross regarding the square root of C and discuss its invariant subspaces.
引用
收藏
页码:595 / 614
页数:20
相关论文
共 35 条
  • [12] DOMAR Y, 1983, P LOND MATH SOC, V46, P288
  • [13] TRANSLATION INVARIANT SUBSPACES OF WEIGHTED LP AND LP SPACES
    DOMAR, Y
    [J]. MATHEMATICA SCANDINAVICA, 1981, 49 (01) : 133 - 144
  • [14] Domar Y., 1989, TRANSLATION INVARIAN, DOI [10.1090/conm/091/1002586, DOI 10.1090/CONM/091/1002586]
  • [15] Domar Y., 1983, RADICAL BANACH ALGEB, P214, DOI [10.1007/BFb0064552, DOI 10.1007/BFB0064552]
  • [16] Dunford Nelson, 1988, Linear Operators Part 1, Genaral Theory
  • [17] Foias C., 1963, ARCH MATH, V14, P341, DOI [10.1007/BF01234965, DOI 10.1007/BF01234965]
  • [18] Fuhrmann P., 1981, Linear systems and operators in Hilbert spaces
  • [19] Gallardo-Gutierrez E A., 2017, HARMONIC ANAL FUNCTI, P125
  • [20] C0-semigroups of 2-isometries and Dirichlet spaces
    Gallardo-Gutierrez, Eva A.
    Partington, Jonathan R.
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (03) : 1415 - 1425