Insights on the Cesaro operator: shift semigroups and invariant subspaces

被引:1
作者
Gallardo-Gutierrez, Eva A. [1 ,2 ]
Partington, Jonathan R. [3 ]
机构
[1] Univ Complutense Madrid, Fac Matemat, Dept Anal Matemat & Matemat Aplicada, Plaza Ciencias 3, Madrid 28040, Spain
[2] Inst Ciencias Matemat ICMAT, Madrid 28049, Spain
[3] Univ Leeds, Sch Math, Leeds LS2 9JT, England
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2024年 / 152卷 / 02期
关键词
TRANSLATION; THEOREM; SPACES;
D O I
10.1007/s11854-023-0305-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A closed subspace is invariant under the Cesaro operator C on the classical Hardy space H-2(D) if and only if its orthogonal complement is invariant under the C-0-semigroup of composition operators induced by the affine maps phi(t)(z)=e(-t)z+1-e(-t) for t >= 0 and z is an element of D. The corresponding result also holds in the Hardy spaces H-p(D) for 1 < p < infinity. Moreover, in the Hilbert space setting, by linking the invariant subspaces of C to the lattice of the closed invariant subspaces of the standard right-shift semigroup acting on a particular weighted L-2-space on the line, we exhibit a large class of non-trivial closed invariant subspaces and provide a complete characterization of the finite codimensional ones, establishing, in particular, the limits of such an approach towards describing the lattice of all invariant subspaces of C. Finally, we present a functional calculus argument which allows us to extend a recent result by Mashreghi, Ptak and Ross regarding the square root of C and discuss its invariant subspaces.
引用
收藏
页码:595 / 614
页数:20
相关论文
共 35 条
  • [1] Aleman A, 1997, INDIANA U MATH J, V46, P337
  • [2] Aleman A., 2007, Topics in complex analysis and operator theory, P3
  • [3] Volterra invariant subspaces of Hp
    Aleman, Alexandru
    Korenblum, Boris
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (06): : 510 - 528
  • [4] [Anonymous], 2006, OPER THEOR
  • [5] Cesaro Operators on the Hardy Spaces of the Half-Plane
    Arvanitidis, Athanasios G.
    Siskakis, Aristomenis G.
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (02): : 229 - 240
  • [6] BERKSON E, 1978, MICH MATH J, V25, P101
  • [7] Bracci F, 2020, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-3-030-36782-4
  • [8] Brown A., 1965, ACTA SCI MATH SZEGED, V26, P125
  • [9] UNIVERSAL COMPOSITION OPERATORS
    Carmo, Joao R.
    Noor, S. Waleed
    [J]. JOURNAL OF OPERATOR THEORY, 2022, 87 (01) : 137 - 156
  • [10] Cowen C., 1995, Studies in Advanced Mathematics