Excitable FitzHugh-Nagumo model with cross-diffusion: close and far-from-equilibrium coherent structures

被引:2
作者
Gambino, G. [1 ]
Lombardo, M. C. [1 ]
Rizzo, R. [2 ]
Sammartino, M. [2 ]
机构
[1] Univ Palermo, Dept Math, Via Archirafi 34, I-90123 Palermo, Italy
[2] Univ Palermo, Dept Engn, Viale Sci Ed 8, I-90128 Palermo, Italy
关键词
Cross-diffusion; Excitability; Amplitude equations; Far-from-equilibrium patterns; PATTERNS; WAVES;
D O I
10.1007/s11587-023-00816-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we shall study the formation of stationary patterns for a reaction-diffusion system in which the FitzHugh-Nagumo (FHN) kinetics, in its excitable regime, is coupled to linear cross-diffusion terms. In (Gambino et al. in Excitable Fitzhugh-Nagumo model with cross-diffusion: long-range activation instabilities, 2023), we proved that the model supports the emergence of cross-Turing patterns, i.e., close-to-equilibrium structures occurring as an effect of cross-diffusion. Here, we shall construct the cross-Turing patterns close to equilibrium on 1-D and 2-D rectangular domains. Through this analysis, we shall show that the species are out-of-phase spatially distributed and derive the amplitude equations that govern the pattern dynamics close to criticality. Moreover, we shall classify the bifurcation in the parameter space, distinguishing between super-and sub-critical transitions. In the final part of the paper, we shall numerically investigate the impact of the cross-diffusion terms on large-amplitude pulse-like solutions existing outside the cross-Turing regime, showing their emergence also in the case of lateral activation and short-range inhibition.
引用
收藏
页码:137 / 156
页数:20
相关论文
共 15 条
[1]   Localized patterns and semi-strong interaction, a unifying framework for reaction-diffusion systems [J].
Al Saadi, Fahad ;
Champneys, Alan ;
Verschueren, Nicolas .
IMA JOURNAL OF APPLIED MATHEMATICS, 2021, 86 (05) :1031-1065
[2]   Subcritical Turing bifurcation and the morphogenesis of localized patterns [J].
Brena-Medina, Victor ;
Champneys, Alan .
PHYSICAL REVIEW E, 2014, 90 (03)
[3]   A weakly nonlinear analysis of the effect of vertical throughflow on Darcy-Benard convection [J].
Capone, F. ;
Gianfrani, J. A. ;
Massa, G. ;
Rees, D. A. S. .
PHYSICS OF FLUIDS, 2023, 35 (01)
[4]   LARGE-AMPLITUDE STATIONARY WAVES IN AN EXCITABLE LATERAL-INHIBITORY MEDIUM [J].
ERMENTROUT, GB ;
HASTINGS, SP ;
TROY, WC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (06) :1133-1149
[5]   Pattern selection in the 2D FitzHugh-Nagumo model [J].
Gambino, G. ;
Lombardo, M. C. ;
Rubino, G. ;
Sammartino, M. .
RICERCHE DI MATEMATICA, 2019, 68 (02) :535-549
[6]   Super-critical and sub-critical bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion [J].
Gambino G. ;
Lombardo M.C. ;
Lupo S. ;
Sammartino M. .
Ricerche di Matematica, 2016, 65 (2) :449-467
[7]  
Gambino G., 2023, EXCITABLE FITZ UNPUB
[8]   CROSS-DIFFUSION EFFECTS ON STATIONARY PATTERN FORMATION IN THE FITZHUGH-NAGUMO MODEL [J].
Gambino, Gaetana ;
Giunta, Valeria ;
Lombardo, Maria Carmela ;
Rubino, Gianfranco .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (12) :7783-7816
[9]   THEORY OF BIOLOGICAL PATTERN FORMATION [J].
GIERER, A ;
MEINHARDT, H .
KYBERNETIK, 1972, 12 (01) :30-39
[10]   Scaffold-mediated symmetry breaking by Cdc42p [J].
Irazoqui, JE ;
Gladfelter, AS ;
Lew, DJ .
NATURE CELL BIOLOGY, 2003, 5 (12) :1062-1070