Existence of Ground State Solutions for Kirchhoff Problems with Hardy Potential

被引:0
作者
Zhou, MengYun [1 ]
Lan, YongYi [1 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
关键词
Kirchhoff problems; Berestycki-Lions type conditions; Hardy potential; Pohozaev identity; Ground state solution; POSITIVE SOLUTIONS; ELLIPTIC EQUATION; ASYMPTOTIC-BEHAVIOR; CRITICAL EXPONENTS; HEAT-EQUATION; MULTIPLICITY;
D O I
10.1007/s12346-023-00841-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study is concerned with the following Kirchhoff problem: -(a + b integral(R3) vertical bar del u vertical bar(2)dx) Delta u - mu/vertical bar x vertical bar(2)u = g(u) in R-3\{0}, (A) where a, b > 0 are constants, mu < 1/4. 1/vertical bar x vertical bar(2) is called the Hardy potential and g : R -> R is a continuous function that satisfies the Berestycki-Lion type condition. Using variational methods, we establish two existence results for problem (A) under different conditions for g. Furthermore, if mu < 0, we prove that the mountain pass level in H-1(R-3) can not be achieved.
引用
收藏
页数:26
相关论文
共 35 条
[1]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[2]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[3]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[4]  
Azzollini A, 2012, DIFFER INTEGRAL EQU, V25, P543
[5]   THE HEAT-EQUATION WITH A SINGULAR POTENTIAL [J].
BARAS, P ;
GOLDSTEIN, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (01) :121-139
[6]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[7]   Existence and bifurcation of solutions for an elliptic degenerate problem [J].
Berestycki, H ;
Esteban, MJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 134 (01) :1-25
[8]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[9]   Solutions for semilinear elliptic equations with critical exponents and Hardy potential [J].
Cao, DM ;
Han, PG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) :521-537
[10]  
Cavalcanti M., 2001, ADV DIFFER EQU-NY, V6, P701