Fractional matching preclusion numbers of Cartesian product graphs

被引:1
|
作者
Luan, Yu [1 ]
Lu, Mei [1 ]
Zhang, Yi [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Available online xxxx; Fractional matching preclusion number; Cartesian product; Path; Cycle;
D O I
10.1016/j.dam.2023.05.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cartesian product of two simple graphs G and H is the graph G ❑ H whose vertex set is V (G) x V(H) and whose edge set is the set of all pairs (u1, v1)(u2, v2) such that either u1u2 E E(G) and v1 = v2, or v1v2 E E(H) and u1 = u2. The fractional matching preclusion number of a graph G, denoted by fmp(G), is the minimum number of edges whose deletion results in a graph with no fractional perfect matching. In this paper, we determine fmp(G ❑ H) when H is a cycle or a path of even order; Moreover, given any integers a, b with a > 1 and 0 < b < a + 1, we construct a graph G such that & delta;(G) = a and fmp(G ❑ H) = b when H is a path of odd order.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:100 / 112
页数:13
相关论文
共 50 条
  • [31] Extraconnectivity of Cartesian product graphs of paths
    Fu, Mingyan
    Yang, Weihua
    Meng, Jixiang
    ARS COMBINATORIA, 2010, 96 : 515 - 520
  • [32] ON THE TOTAL IRREGULARITY STRENGTH OF SOME CARTESIAN PRODUCT GRAPHS
    Ramdani, R.
    Salman, A. N. M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2013, 10 (02) : 199 - 209
  • [33] Regular embeddings of Cartesian product graphs
    Zhang, Jun-Yang
    DISCRETE MATHEMATICS, 2012, 312 (02) : 258 - 264
  • [34] Power domination of the cartesian product of graphs
    Koh, K. M.
    Soh, K. W.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (01) : 22 - 30
  • [35] THE DIAMETER VARIABILITY OF THE CARTESIAN PRODUCT OF GRAPHS
    Chithra, M. R.
    Vijayakumar, A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (01)
  • [36] The Thickness of the Cartesian Product of Two Graphs
    Chen, Yichao
    Yin, Xuluo
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (04): : 705 - 720
  • [37] ON TOTAL DOMINATION IN THE CARTESIAN PRODUCT OF GRAPHS
    Bresar, Bostjan
    Hartinger, Tatiana Romina
    Kos, Tim
    Milanic, Martin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (04) : 963 - 976
  • [38] Local colourings of Cartesian product graphs
    Klavzar, Sandi
    Shao, Zehui
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (04) : 694 - 699
  • [39] Semi-cartesian product of graphs
    Metrose Metsidik
    Journal of Mathematical Chemistry, 2014, 52 : 856 - 865
  • [40] Betweenness centrality in Cartesian product of graphs
    Kumar, Sunil R.
    Balakrishnan, Kannan
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 571 - 583