Necessary and sufficient conditions for the existence of entire subsolutions to p-k-Hessian equations

被引:10
作者
Zhang, Xuemei [1 ]
Yang, Yuyao [1 ]
机构
[1] North China Elect Power Univ, Sch Math & Phys, Beijing 102206, Peoples R China
基金
北京市自然科学基金;
关键词
p-k-Hessian equation; Entire subsolution; Existence; Euler's break line and mathematical; induction method; BLOW-UP SOLUTIONS; MONGE-AMPERE EQUATIONS; BOUNDARY; NONEXISTENCE; BEHAVIOR;
D O I
10.1016/j.na.2023.113299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we intend to analyze the existence of entire subsolutions to the p -k-Hessian equation1 Sk (& lambda;((Di(|Du|p-2Dju)) + & alpha;|Du|& beta;(p-1)I)) = f(u), x & ISIN; Rn, k where ,3 = 0 or 1, p & GE; 2 and & alpha; & GE; 0 is a constant. The necessary and sufficient conditions on f for the existence of entire subsolutions are established. Since ,3 = 0 or 1 and & alpha; & GE; 0 not & alpha; & EQUIV; 0, it is very difficult to judge the sign of second order derivative. We will overcome the difficulty by introducing a new technique.& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 33 条
  • [1] Necessary and sufficient conditions on global solvability for the p-k-Hessian inequalities
    Bao, Jiguang
    Feng, Qiaoli
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, : 1004 - 1019
  • [2] Existence and nonexistence theorem for entire subsolutions of k-Yamabe type equations
    Bao, Jiguang
    Ji, Xiaohu
    Li, Haigang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (07) : 2140 - 2160
  • [3] The Keller-Osserman Problem for the k-Hessian Operator
    Covei, Dragos-Patru
    [J]. RESULTS IN MATHEMATICS, 2020, 75 (02)
  • [4] On the Liouville property for fully nonlinear equations
    Cutrì, A
    Leoni, F
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (02): : 219 - 245
  • [5] EXISTENCE AND NONEXISTENCE OF SUBSOLUTIONS FOR AUGMENTED HESSIAN EQUATIONS
    Dai, Limei
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (01) : 579 - 596
  • [6] ENTIRE SUBSOLUTIONS OF MONGE-AMPERE TYPE EQUATIONS
    Dai, Limei
    Li, Hongyu
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (01) : 19 - 30
  • [7] Dolcetta IC, 2014, BULL INST MATH ACAD, V9, P147
  • [8] On the inequality
    Dolcetta, Italo Capuzzo
    Leoni, Fabiana
    Vitolo, Antonio
    [J]. MATHEMATISCHE ANNALEN, 2016, 365 (1-2) : 423 - 448
  • [9] Dumont S, 2007, ADV NONLINEAR STUD, V7, P271
  • [10] On critical exponents for the Pucci's extremal operators
    Felmer, PL
    Quaas, A
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (05): : 843 - 865