Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients

被引:51
|
作者
Tsai, Pei-Chen [1 ,2 ]
Lee, Tsung-Hua [2 ]
Kuo, Kun-Chi [2 ]
Su, Fang-Yi [2 ]
Lee, Tsung-Lu Michael [3 ]
Marostica, Eliana [1 ,4 ]
Ugai, Tomotaka [5 ,6 ]
Zhao, Melissa [6 ]
Lau, Mai Chan [6 ]
Vayrynen, Juha P. [7 ,8 ]
Giannakis, Marios [9 ]
Takashima, Yasutoshi [6 ]
Kahaki, Seyed Mousavi [6 ]
Wu, Kana [10 ]
Song, Mingyang [5 ]
Meyerhardt, Jeffrey A. [9 ]
Chan, Andrew T. [11 ]
Chiang, Jung-Hsien [2 ]
Nowak, Jonathan [6 ]
Ogino, Shuji [5 ,6 ]
Yu, Kun-Hsing [1 ,6 ]
机构
[1] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[2] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan, Taiwan
[3] Southern Taiwan Univ Sci & Technol, Dept Comp Sci & Informat Engn, Tainan, Taiwan
[4] Harvard Massachusetts Inst Technol, Div Hlth Sci & Technol, Boston, MA USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[6] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[7] Oulu Univ Hosp, Med Res Ctr Oulu, Canc & Translat Med Res Unit, Oulu, Finland
[8] Univ Oulu, Oulu, Finland
[9] Dana Farber Canc Inst, Dept Med, Boston, MA USA
[10] Harvard TH Chan Sch Publ Hlth, Dept Nutr, Boston, MA USA
[11] Massachusetts Gen Hosp, Dept Med, Boston, MA USA
基金
美国国家卫生研究院;
关键词
MOLECULAR SUBTYPES; ASSOCIATION; EVOLUTION; MODEL;
D O I
10.1038/s41467-023-37179-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Histopathologic assessment is indispensable for diagnosing colorectal cancer (CRC). However, manual evaluation of the diseased tissues under the microscope cannot reliably inform patient prognosis or genomic variations crucial for treatment selections. To address these challenges, we develop the Multi-omics Multi-cohort Assessment (MOMA) platform, an explainable machine learning approach, to systematically identify and interpret the relationship between patients' histologic patterns, multi-omics, and clinical profiles in three large patient cohorts (n = 1888). MOMA successfully predicts the overall survival, disease-free survival (log-rank test P-value<0.05), and copy number alterations of CRC patients. In addition, our approaches identify interpretable pathology patterns predictive of gene expression profiles, microsatellite instability status, and clinically actionable genetic alterations. We show that MOMA models are generalizable to multiple patient populations with different demographic compositions and pathology images collected from distinctive digitization methods. Our machine learning approaches provide clinically actionable predictions that could inform treatments for colorectal cancer patients. Histopathological analysis is an essential tool in diagnosing colorectal cancer, but is limited in predicting prognosis and molecular profiles. Here, the authors designed a machine learning-based platform to predict multi-omics profiles and prognosis from pathology images.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies
    Berg, Kaja C. G.
    Eide, Peter W.
    Eilertsen, Ina A.
    Johannessen, Bjarne
    Bruun, Jarle
    Danielsen, Stine A.
    Bjornslett, Merete
    Meza-Zepeda, Leonardo A.
    Eknaes, Mette
    Lind, Guro E.
    Myklebost, Ola
    Skotheim, Rolf I.
    Sveen, Anita
    Lothe, Ragnhild A.
    MOLECULAR CANCER, 2017, 16
  • [32] Benchmarking multi-omics integrative clustering methods for subtype identification in colorectal cancer
    Zhang, Shuai
    Lv, Jiali
    Zhang, Jinglan
    Fan, Zhe
    Gu, Bingbing
    Fan, Bingbing
    Li, Chunxia
    Wang, Cheng
    Zhang, Tao
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 261
  • [33] Multi-omics Pathways Workflow (MOPAW): An Automated Multi-omics Workflow on the Cancer Genomics Cloud
    Nguyen, Trinh
    Bian, Xiaopeng
    Roberson, David
    Khanna, Rakesh
    Chen, Qingrong
    Yan, Chunhua
    Beck, Rowan
    Worman, Zelia
    Meerzaman, Daoud
    CANCER INFORMATICS, 2023, 22
  • [34] Multi-omics Pathways Workflow (MOPAW): An Automated Multi-omics Workflow on the Cancer Genomics Cloud
    Nguyen, Trinh
    Bian, Xiaopeng
    Roberson, David
    Khanna, Rakesh
    Chen, Qingrong
    Yan, Chunhua
    Beck, Rowan
    Worman, Zelia
    Meerzaman, Daoud
    CANCER INFORMATICS, 2023, 22
  • [35] Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients
    Chauhan, Pradeep S.
    Shiang, Alexander
    Alahi, Irfan
    Sundby, R. Taylor
    Feng, Wenjia
    Gungoren, Bilge
    Nawaf, Cayce
    Chen, Kevin
    Babbra, Ramandeep K.
    Harris, Peter K.
    Qaium, Faridi
    Hatscher, Casey
    Antiporda, Anna
    Brunt, Lindsey
    Mayer, Lindsey R.
    Shern, Jack F.
    Baumann, Brian C.
    Kim, Eric H.
    Reimers, Melissa A.
    Smith, Zachary L.
    Chaudhuri, Aadel A.
    NPJ PRECISION ONCOLOGY, 2023, 7 (01)
  • [36] Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients
    Pradeep S. Chauhan
    Alexander Shiang
    Irfan Alahi
    R. Taylor Sundby
    Wenjia Feng
    Bilge Gungoren
    Cayce Nawaf
    Kevin Chen
    Ramandeep K. Babbra
    Peter K. Harris
    Faridi Qaium
    Casey Hatscher
    Anna Antiporda
    Lindsey Brunt
    Lindsey R. Mayer
    Jack F. Shern
    Brian C. Baumann
    Eric H. Kim
    Melissa A. Reimers
    Zachary L. Smith
    Aadel A. Chaudhuri
    npj Precision Oncology, 7
  • [37] Geometric graph neural networks on multi-omics data to predict cancer survival outcomes
    Zhu, Jiening
    Oh, Jung Hun
    Simhal, Anish K.
    Elkin, Rena
    Norton, Larry
    Deasy, Joseph O.
    Tannenbaum, Allen
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163
  • [38] Multi-omics analysis of feces revealed the alteration of gut microbiota in post-surgery patients with colorectal cancer
    Takamaru, Hiroyuki
    Shiba, Satoshi
    Yachida, Shinichi
    Saito, Yutaka
    CANCER SCIENCE, 2023, 114 : 960 - 960
  • [39] Integrated multi-omics analysis reveals systemic and localized metabolic disruptions in colorectal cancer
    Patti, Gary
    Stancliffe, Ethan
    Richardson, Adam
    Mehta, Ashima
    Gandhi, Monil
    Cho, Kevin
    CANCER RESEARCH, 2024, 84 (06)
  • [40] Multi-Omics Approaches in Colorectal Cancer Screening and Diagnosis, Recent Updates and Future Perspectives
    Ullah, Ihsan
    Yang, Le
    Yin, Feng-Ting
    Sun, Ye
    Li, Xing-Hua
    Li, Jing
    Wang, Xi-Jun
    CANCERS, 2022, 14 (22)