Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients

被引:51
|
作者
Tsai, Pei-Chen [1 ,2 ]
Lee, Tsung-Hua [2 ]
Kuo, Kun-Chi [2 ]
Su, Fang-Yi [2 ]
Lee, Tsung-Lu Michael [3 ]
Marostica, Eliana [1 ,4 ]
Ugai, Tomotaka [5 ,6 ]
Zhao, Melissa [6 ]
Lau, Mai Chan [6 ]
Vayrynen, Juha P. [7 ,8 ]
Giannakis, Marios [9 ]
Takashima, Yasutoshi [6 ]
Kahaki, Seyed Mousavi [6 ]
Wu, Kana [10 ]
Song, Mingyang [5 ]
Meyerhardt, Jeffrey A. [9 ]
Chan, Andrew T. [11 ]
Chiang, Jung-Hsien [2 ]
Nowak, Jonathan [6 ]
Ogino, Shuji [5 ,6 ]
Yu, Kun-Hsing [1 ,6 ]
机构
[1] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[2] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan, Taiwan
[3] Southern Taiwan Univ Sci & Technol, Dept Comp Sci & Informat Engn, Tainan, Taiwan
[4] Harvard Massachusetts Inst Technol, Div Hlth Sci & Technol, Boston, MA USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[6] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[7] Oulu Univ Hosp, Med Res Ctr Oulu, Canc & Translat Med Res Unit, Oulu, Finland
[8] Univ Oulu, Oulu, Finland
[9] Dana Farber Canc Inst, Dept Med, Boston, MA USA
[10] Harvard TH Chan Sch Publ Hlth, Dept Nutr, Boston, MA USA
[11] Massachusetts Gen Hosp, Dept Med, Boston, MA USA
基金
美国国家卫生研究院;
关键词
MOLECULAR SUBTYPES; ASSOCIATION; EVOLUTION; MODEL;
D O I
10.1038/s41467-023-37179-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Histopathologic assessment is indispensable for diagnosing colorectal cancer (CRC). However, manual evaluation of the diseased tissues under the microscope cannot reliably inform patient prognosis or genomic variations crucial for treatment selections. To address these challenges, we develop the Multi-omics Multi-cohort Assessment (MOMA) platform, an explainable machine learning approach, to systematically identify and interpret the relationship between patients' histologic patterns, multi-omics, and clinical profiles in three large patient cohorts (n = 1888). MOMA successfully predicts the overall survival, disease-free survival (log-rank test P-value<0.05), and copy number alterations of CRC patients. In addition, our approaches identify interpretable pathology patterns predictive of gene expression profiles, microsatellite instability status, and clinically actionable genetic alterations. We show that MOMA models are generalizable to multiple patient populations with different demographic compositions and pathology images collected from distinctive digitization methods. Our machine learning approaches provide clinically actionable predictions that could inform treatments for colorectal cancer patients. Histopathological analysis is an essential tool in diagnosing colorectal cancer, but is limited in predicting prognosis and molecular profiles. Here, the authors designed a machine learning-based platform to predict multi-omics profiles and prognosis from pathology images.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Multi-Omics Prognostic Signatures Based on Lipid Metabolism for Colorectal Cancer
    Sun, YuanLin
    Liu, Bin
    Chen, YuJia
    Xing, YanPeng
    Zhang, Yang
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 9
  • [22] Multi-omics characterization of left-right colorectal cancer.
    Marshall, John
    Yoshino, Takayuki
    Rha, Sun Young
    Church, David N.
    Coutinho, Anelisa Kruschewsky
    Sampaio-Filho, Carlos Alberto
    Gallagher, David James
    Garcia-Foncillas, Jesus
    von der Heyde, Silvia
    Juhl, Hartmut
    Woodsmith, Jonathan
    Kerr, David J.
    JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)
  • [23] Integrative subtyping of nonsmall cell lung cancer using histopathology and multi-omics data
    Han, Xinyin
    Mu, Jing
    Li, Chen
    Niu, Beifang
    Xiao, Ning
    Lu, Zhonghua
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2025,
  • [24] Integrative models of histopathological images and multi-omics data predict prognosis in endometrial carcinoma
    Li, Yueyi
    Du, Peixin
    Zeng, Hao
    Wei, Yuhao
    Fu, Haoxuan
    Zhong, Xi
    Ma, Xuelei
    PEERJ, 2023, 11
  • [25] Histopathological Images and Multi-Omics Integration Predict Molecular Characteristics and Survival in Lung Adenocarcinoma
    Chen, Linyan
    Zeng, Hao
    Xiang, Yu
    Huang, Yeqian
    Luo, Yuling
    Ma, Xuelei
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [26] Integrated multi-omics characterization of SMAD4 mutant colorectal cancer
    Zhao, Danyi
    Qu, Yanjun
    Gao, Na
    Wu, Tao
    DISCOVER ONCOLOGY, 2024, 15 (01)
  • [27] A multi-omics signature for patients' risk classification in prostate cancer
    Xu, Zhuoran
    Benedetti, Elisa
    Carelli, Ryan
    Rosenthal, Jacob
    Pakula, Hubert
    Omar, Mohamed
    Umeton, Renato
    Brundage, David
    Krumsiek, Jan
    Loda, Massimo
    Marchionni, Luigi
    CANCER RESEARCH, 2022, 82 (12)
  • [28] Immunotherapy and Cancer: The Multi-Omics Perspective
    Donisi, Clelia
    Pretta, Andrea
    Pusceddu, Valeria
    Ziranu, Pina
    Lai, Eleonora
    Puzzoni, Marco
    Mariani, Stefano
    Massa, Elena
    Madeddu, Clelia
    Scartozzi, Mario
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (06)
  • [29] Metabolomics and the Multi-Omics View of Cancer
    Wishart, David
    METABOLITES, 2022, 12 (02)
  • [30] Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies
    Kaja C. G. Berg
    Peter W. Eide
    Ina A. Eilertsen
    Bjarne Johannessen
    Jarle Bruun
    Stine A. Danielsen
    Merete Bjørnslett
    Leonardo A. Meza-Zepeda
    Mette Eknæs
    Guro E. Lind
    Ola Myklebost
    Rolf I. Skotheim
    Anita Sveen
    Ragnhild A. Lothe
    Molecular Cancer, 16