Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients

被引:51
|
作者
Tsai, Pei-Chen [1 ,2 ]
Lee, Tsung-Hua [2 ]
Kuo, Kun-Chi [2 ]
Su, Fang-Yi [2 ]
Lee, Tsung-Lu Michael [3 ]
Marostica, Eliana [1 ,4 ]
Ugai, Tomotaka [5 ,6 ]
Zhao, Melissa [6 ]
Lau, Mai Chan [6 ]
Vayrynen, Juha P. [7 ,8 ]
Giannakis, Marios [9 ]
Takashima, Yasutoshi [6 ]
Kahaki, Seyed Mousavi [6 ]
Wu, Kana [10 ]
Song, Mingyang [5 ]
Meyerhardt, Jeffrey A. [9 ]
Chan, Andrew T. [11 ]
Chiang, Jung-Hsien [2 ]
Nowak, Jonathan [6 ]
Ogino, Shuji [5 ,6 ]
Yu, Kun-Hsing [1 ,6 ]
机构
[1] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[2] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan, Taiwan
[3] Southern Taiwan Univ Sci & Technol, Dept Comp Sci & Informat Engn, Tainan, Taiwan
[4] Harvard Massachusetts Inst Technol, Div Hlth Sci & Technol, Boston, MA USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[6] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[7] Oulu Univ Hosp, Med Res Ctr Oulu, Canc & Translat Med Res Unit, Oulu, Finland
[8] Univ Oulu, Oulu, Finland
[9] Dana Farber Canc Inst, Dept Med, Boston, MA USA
[10] Harvard TH Chan Sch Publ Hlth, Dept Nutr, Boston, MA USA
[11] Massachusetts Gen Hosp, Dept Med, Boston, MA USA
基金
美国国家卫生研究院;
关键词
MOLECULAR SUBTYPES; ASSOCIATION; EVOLUTION; MODEL;
D O I
10.1038/s41467-023-37179-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Histopathologic assessment is indispensable for diagnosing colorectal cancer (CRC). However, manual evaluation of the diseased tissues under the microscope cannot reliably inform patient prognosis or genomic variations crucial for treatment selections. To address these challenges, we develop the Multi-omics Multi-cohort Assessment (MOMA) platform, an explainable machine learning approach, to systematically identify and interpret the relationship between patients' histologic patterns, multi-omics, and clinical profiles in three large patient cohorts (n = 1888). MOMA successfully predicts the overall survival, disease-free survival (log-rank test P-value<0.05), and copy number alterations of CRC patients. In addition, our approaches identify interpretable pathology patterns predictive of gene expression profiles, microsatellite instability status, and clinically actionable genetic alterations. We show that MOMA models are generalizable to multiple patient populations with different demographic compositions and pathology images collected from distinctive digitization methods. Our machine learning approaches provide clinically actionable predictions that could inform treatments for colorectal cancer patients. Histopathological analysis is an essential tool in diagnosing colorectal cancer, but is limited in predicting prognosis and molecular profiles. Here, the authors designed a machine learning-based platform to predict multi-omics profiles and prognosis from pathology images.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients
    Pei-Chen Tsai
    Tsung-Hua Lee
    Kun-Chi Kuo
    Fang-Yi Su
    Tsung-Lu Michael Lee
    Eliana Marostica
    Tomotaka Ugai
    Melissa Zhao
    Mai Chan Lau
    Juha P. Väyrynen
    Marios Giannakis
    Yasutoshi Takashima
    Seyed Mousavi Kahaki
    Kana Wu
    Mingyang Song
    Jeffrey A. Meyerhardt
    Andrew T. Chan
    Jung-Hsien Chiang
    Jonathan Nowak
    Shuji Ogino
    Kun-Hsing Yu
    Nature Communications, 14
  • [2] A multi-omics approach on hereditary colorectal cancer
    Eiengard, Frida
    Rohlin, Anna
    Ellegard, Rada
    Palmeback, Pia
    Rosliden, Monica
    Andersson, Daniel Madan
    Olausson, Torbjorn
    Nordling, Margareta
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 585 - 585
  • [3] Multi-omics Analysis of Colorectal Cancer Metabolism
    Soga, Tomoyoshi
    CANCER SCIENCE, 2018, 109 : 193 - 193
  • [4] A multi-omics machine learning framework in predicting the survival of colorectal cancer patients
    Yang, Min
    Yang, Huandong
    Ji, Lei
    Hu, Xuan
    Tian, Geng
    Wang, Bing
    Yang, Jialiang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [5] Empowering biologists with multi-omics data: colorectal cancer as a paradigm
    Zhu, Jing
    Shi, Zhiao
    Wang, Jing
    Zhang, Bing
    BIOINFORMATICS, 2015, 31 (09) : 1436 - 1443
  • [6] Multi-omics analysis to identify driving factors in colorectal cancer
    Xu, Xi
    Gong, Chaoju
    Wang, Yunfeng
    Hu, Yanyan
    Liu, Hong
    Fang, Zejun
    EPIGENOMICS, 2020, 12 (18) : 1633 - 1650
  • [7] Multi-omics analyses of glucose metabolic reprogramming in colorectal cancer
    Huang, Maosen
    Wu, Yancen
    Cheng, Linyao
    Fu, Lihua
    Yan, Haochao
    Ru, Haiming
    Mo, Xianwei
    Yan, Linhai
    Su, Zijie
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [8] Multi-omics analysis to identify susceptibility genes for colorectal cancer
    Yuan, Yuan
    Bao, Jiandong
    Chen, Zhishan
    Diez Villanueva, Anna
    Wen, Wanqing
    Wang, Fangqin
    Zhao, Dejian
    Fu, Xianghui
    Cai, Qiuyin
    Long, Jirong
    Shu, Xiao-Ou
    Zheng, Deyou
    Moreno, Victor
    Zheng, Wei
    Lin, Weiqiang
    Guo, Xingyi
    HUMAN MOLECULAR GENETICS, 2021, 30 (05) : 321 - 330
  • [9] Integrated multi-omics characterization of KRAS mutant colorectal cancer
    Chong, Wei
    Zhu, Xingyu
    Ren, Huicheng
    Ye, Chunshui
    Xu, Kang
    Wang, Zhe
    Jia, Shengtao
    Shang, Liang
    Li, Leping
    Chen, Hao
    THERANOSTICS, 2022, 12 (11): : 5138 - 5154
  • [10] Multi-omics analysis of fecal samples in colorectal cancer Egyptians patients: a pilot study
    Randa H. Khattab
    Rana H. Abo-Hammam
    Mohammed Salah
    Amro M. Hanora
    Sarah Shabayek
    Samira Zakeer
    BMC Microbiology, 23