The Exosome-Mediated PI3K/Akt/mTOR Signaling Pathway in Neurological Diseases

被引:21
|
作者
Iranpanah, Amin [1 ,2 ]
Kooshki, Leila [3 ]
Moradi, Seyed Zachariah [1 ]
Saso, Luciano [4 ]
Fakhri, Sajad [1 ]
Khan, Haroon [5 ]
机构
[1] Kermanshah Univ Med Sci, Hlth Inst, Pharmaceut Sci Res Ctr, Kermanshah 6734667149, Iran
[2] Kermanshah Univ Med Sci, USERN Off, Kermanshah 6715847141, Iran
[3] Kermanshah Univ Med Sci, Student Res Comm, Kermanshah 6714415153, Iran
[4] Sapienza Univ, Dept Physiol & Pharmacol Vittorio Erspamer, Ple Aldo Moro 5, I-00185 Rome, Italy
[5] Abdul Wali Khan Univ, Dept Pharm, Mardan 23200, Pakistan
关键词
exosome; neurological disease; neurodegenerative disease; targeted delivery; PI3K; Akt; mTOR; TRAUMATIC BRAIN-INJURY; SPINAL-CORD-INJURY; RECOVERY;
D O I
10.3390/pharmaceutics15031006
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
As major public health concerns associated with a rapidly growing aging population, neurodegenerative diseases (NDDs) and neurological diseases are important causes of disability and mortality. Neurological diseases affect millions of people worldwide. Recent studies have indicated that apoptosis, inflammation, and oxidative stress are the main players of NDDs and have critical roles in neurodegenerative processes. During the aforementioned inflammatory/apoptotic/oxidative stress procedures, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a crucial role. Considering the functional and structural aspects of the blood-brain barrier, drug delivery to the central nervous system is relatively challenging. Exosomes are nanoscale membrane-bound carriers that can be secreted by cells and carry several cargoes, including proteins, nucleic acids, lipids, and metabolites. Exosomes significantly take part in the intercellular communications due to their specific features including low immunogenicity, flexibility, and great tissue/cell penetration capabilities. Due to their ability to cross the blood-brain barrier, these nano-sized structures have been introduced as proper vehicles for central nervous system drug delivery by multiple studies. In the present systematic review, we highlight the potential therapeutic effects of exosomes in the context of NDDs and neurological diseases by targeting the PI3K/Akt/mTOR signaling pathway.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Targeting PI3K/AKT/mTOR Signaling Pathway as a Radiosensitization in Head and Neck Squamous Cell Carcinomas
    Su, Yu-Chieh
    Lee, Wei-Chang
    Wang, Chih-Chun
    Yeh, Shyh-An
    Chen, Wen-Hui
    Chen, Po-Jen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (24)
  • [32] Rapamycin reduces podocyte damage by inhibiting the PI3K/AKT/mTOR signaling pathway and promoting autophagy
    Yu, Shengyou
    Ren, Qi
    Chen, Jing
    Huang, Jing
    Liang, Rui
    EUROPEAN JOURNAL OF INFLAMMATION, 2022, 20
  • [33] PTEN modulates neurites outgrowth and neuron apoptosis involving the PI3K/Akt/mTOR signaling pathway
    Liu, Shen
    Jia, Jun
    Zhou, Hengxing
    Zhang, Chi
    Liu, Lu
    Liu, Jun
    Lu, Lu
    Li, Xueying
    Kang, Yi
    Lou, Yongfu
    Cai, Zhiwei
    Ren, Yiming
    Kong, Xiaohong
    Feng, Shiqing
    MOLECULAR MEDICINE REPORTS, 2019, 20 (05) : 4059 - 4066
  • [34] The PI3K/AKT/mTOR signaling pathway in breast cancer: Review of clinical trials and latest advances
    Khorasani, Ayda Baghery Saghchy
    Hafezi, Nasim
    Sanaei, Mohammad-Javad
    Jafari-Raddani, Farideh
    Pourbagheri-Sigaroodi, Atieh
    Bashash, Davood
    CELL BIOCHEMISTRY AND FUNCTION, 2024, 42 (03)
  • [35] Rapamycin reduces podocyte damage by inhibiting the PI3K/AKT/mTOR signaling pathway and promoting autophagy
    Yu, Shengyou
    Ren, Qi
    Chen, Jing
    Huang, Jing
    Liang, Rui
    EUROPEAN JOURNAL OF INFLAMMATION, 2022, 20
  • [36] CAMK1D Inhibits Glioma Through the PI3K/AKT/mTOR Signaling Pathway
    Jin, Qianxu
    Zhao, Jiahui
    Zhao, Zijun
    Zhang, Shiyang
    Sun, Zhimin
    Shi, Yunpeng
    Yan, Hongshan
    Wang, Yizheng
    Liu, Liping
    Zhao, Zongmao
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [37] GRP94 promotes muscle differentiation by inhibiting the PI3K/AKT/mTOR signaling pathway
    Li, Shuang
    Fu, Yuying
    Pang, Yusheng
    Tong, Huili
    Li, Shufeng
    Yan, Yunqin
    JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (11) : 21211 - 21223
  • [38] Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration
    Fakhri, Sajad
    Iranpanah, Amin
    Gravandi, Mohammad Mehdi
    Moradi, Seyed Zachariah
    Ranjbari, Mohammad
    Majnooni, Mohammad Bagher
    Echeverria, Javier
    Qi, Yaping
    Wang, Mingfu
    Liao, Pan
    Farzaei, Mohammad Hosein
    Xiao, Jianbo
    PHYTOMEDICINE, 2021, 91
  • [39] Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: novel therapeutic agents and advances in understanding
    Sami, Arshawn
    Karsy, Michael
    TUMOR BIOLOGY, 2013, 34 (04) : 1991 - 2002
  • [40] Aspirin alleviates pulmonary fibrosis through PI3K/AKT/mTOR-mediated autophagy pathway
    Peng, Jieting
    Xiao, Xun
    Li, Shizhen
    Lyu, Xing
    Gong, Hui
    Tan, Shengyu
    Dong, Lini
    Sanders, Yan Y.
    Zhang, Xiangyu
    EXPERIMENTAL GERONTOLOGY, 2023, 172