etiBsu1209: A comprehensive multiscale metabolic model for Bacillus subtilis

被引:17
作者
Bi, Xinyu [1 ,2 ]
Cheng, Yang [1 ,2 ]
Xu, Xianhao [1 ,2 ]
Lv, Xueqin [1 ,2 ]
Liu, Yanfeng [1 ,2 ]
Li, Jianghua [1 ,2 ]
Du, Guocheng [1 ,2 ]
Chen, Jian [1 ,2 ]
Ledesma-Amaro, Rodrigo [3 ]
Liu, Long [1 ,2 ,4 ]
机构
[1] Jiangnan Univ, Key Lab Carbohydrate Chem & Biotechnol, Minist Educ, Wuxi, Peoples R China
[2] Jiangnan Univ, Sci Ctr Future Foods, Minist Educ, Wuxi, Peoples R China
[3] Ctr Synthet Biol, Dept Bioengn, London, England
[4] Jiangnan Univ, Key Lab Carbohydrate Chem & Biotechnol, Minist Educ, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Bacillus subtilis; comprehensive multiscale metabolic model; enzymatic constraints; thermodynamics constraints; transcriptional regulatory network model; GENOME; RECONSTRUCTION; RIBOFLAVIN; REFINEMENT; NETWORKS; SEQUENCE;
D O I
10.1002/bit.28355
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genome-scale metabolic models (GEMs) have been widely used to guide the computational design of microbial cell factories, and to date, seven GEMs have been reported for Bacillus subtilis, a model gram-positive microorganism widely used in bioproduction of functional nutraceuticals and food ingredients. However, none of them are widely used because they often lead to erroneous predictions due to their low predictive power and lack of information on regulatory mechanisms. In this work, we constructed a new version of GEM for B. subtilis (iBsu1209), which contains 1209 genes, 1595 metabolites, and 1948 reactions. We applied machine learning to fill gaps, which formed a relatively complete metabolic network able to predict with high accuracy (89.3%) the growth of 1209 mutants under 12 different culture conditions. In addition, we developed a visualization and code-free software, Model Tool, for multiconstraints model reconstruction and analysis. We used this software to construct etiBsu1209, a multiscale model that integrates enzymatic constraints, thermodynamic constraints, and transcriptional regulatory networks. Furthermore, we used etiBsu1209 to guide a metabolic engineering strategy (knocking out fabI and yfkN genes) for the overproduction of nutraceutical menaquinone-7, and the titer increased to 153.94 mg/L, 2.2-times that of the parental strain. To the best of our knowledge, etiBsu1209 is the first comprehensive multiscale model for B. subtilis and can serve as a solid basis for rational computational design of B. subtilis cell factories for bioproduction.
引用
收藏
页码:1623 / 1639
页数:17
相关论文
共 49 条
[1]   An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network [J].
Arrieta-Ortiz, Mario L. ;
Hafemeister, Christoph ;
Bate, Ashley Rose ;
Chu, Timothy ;
Greenfield, Alex ;
Shuster, Bentley ;
Barry, Samantha N. ;
Gallitto, Matthew ;
Liu, Brian ;
Kacmarczyk, Thadeous ;
Santoriello, Francis ;
Chen, Jie ;
Rodrigues, Christopher D. A. ;
Sato, Tsutomu ;
Rudner, David Z. ;
Driks, Adam ;
Bonneau, Richard ;
Eichenberger, Patrick .
MOLECULAR SYSTEMS BIOLOGY, 2015, 11 (11)
[2]   A deep learning architecture for metabolic pathway prediction [J].
Baranwal, Mayank ;
Magner, Abram ;
Elvati, Paolo ;
Saldinger, Jacob ;
Violi, Angela ;
Hero, Alfred O. .
BIOINFORMATICS, 2020, 36 (08) :2547-2553
[3]   From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later [J].
Barbe, Valerie ;
Cruveiller, Stephane ;
Kunst, Frank ;
Lenoble, Patricia ;
Meurice, Guillaume ;
Sekowska, Agnieszka ;
Vallenet, David ;
Wang, Tingzhang ;
Moszer, Ivan ;
Medigue, Claudine ;
Danchin, Antoine .
MICROBIOLOGY-SGM, 2009, 155 :1758-1775
[4]   An updated metabolic view of the Bacillus subtilis 168 genome [J].
Belda, Eugeni ;
Sekowska, Agnieszka ;
Le Fevre, Francois ;
Morgat, Anne ;
Mornico, Damien ;
Ouzounis, Christos ;
Vallenet, David ;
Medigue, Claudine ;
Danchin, Antoine .
MICROBIOLOGY-SGM, 2013, 159 :757-770
[5]   Bacillus subtilis, the model Gram-positive bacterium: 20years of annotation refinement [J].
Borriss, Rainer ;
Danchin, Antoine ;
Harwood, Colin R. ;
Medigue, Claudine ;
Rocha, Eduardo P. C. ;
Sekowska, Agnieszka ;
Vallenet, David .
MICROBIAL BIOTECHNOLOGY, 2018, 11 (01) :3-17
[6]   Genetic Competence Drives Genome Diversity in Bacillus subtilis [J].
Brito, Patricia H. ;
Chevreux, Bastien ;
Serra, Claudia R. ;
Schyns, Ghislain ;
Henriques, Adriano O. ;
Pereira-Leal, Jose B. .
GENOME BIOLOGY AND EVOLUTION, 2018, 10 (01) :108-124
[7]   OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization [J].
Burgard, AP ;
Pharkya, P ;
Maranas, CD .
BIOTECHNOLOGY AND BIOENGINEERING, 2003, 84 (06) :647-657
[8]   Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis [J].
Chandrasekaran, Sriram ;
Price, Nathan D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (41) :17845-17850
[9]   Engineering a Bifunctional Phr60-Rap60-Spo0A Quorum-Sensing Molecular Switch for Dynamic Fine-Tuning of Menaquinone-7 Synthesis in Bacillus subtilis [J].
Cui, Shixiu ;
Lv, Xueqin ;
Wu, Yaokang ;
Li, Jianghua ;
Du, Guocheng ;
Ledesma-Amaro, Rodrigo ;
Liu, Long .
ACS SYNTHETIC BIOLOGY, 2019, 8 (08) :1826-1837
[10]  
El Asmar Margueritta S, 2014, Oman Med J, V29, P172, DOI 10.5001/omj.2014.44