Giant hot electron thermalization via stacking of graphene layers

被引:36
作者
Du, Sichao [1 ,2 ]
Xie, Hao [1 ,2 ]
Yin, Juxin [1 ]
Sun, Yunlei [1 ]
Wang, Qiuting [1 ]
Liu, Hong [1 ]
Qi, Wei [1 ]
Cai, Chunfeng [1 ]
Bi, Gang [1 ]
Xiao, Duo [1 ]
Chen, Wenchao [3 ]
Shen, Xiaoyan [4 ]
Yin, Wen-Yan [2 ]
Zheng, Rongkun [5 ]
机构
[1] Zhejiang Univ City Coll, Sch Informat & Elect Engn, Hangzhou 310015, Zhejiang, Peoples R China
[2] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, Univ Illinois Urbana, Zhejiang Univ, Champaign Inst, Zhejiang 314400, Peoples R China
[4] Zhejiang Univ Technol, Coll Sci, Hangzhou 310014, Zhejiang, Peoples R China
[5] Univ Sydney, Australian Inst Nanoscale Sci & Technol, Sch Phys, Sydney, NSW 2006, Australia
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Hot electrons; Transient absorption; Graphene; Mid-infrared; Auger recombination; CARRIER MULTIPLICATION; TRANSIENT ABSORPTION; GENERATION; MICROSCOPY;
D O I
10.1016/j.carbon.2022.12.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The capability of graphene to generate hot electrons is predicted to be effective in converting low energy photons into electrical currents for the mid-infrared photodetection [1,2]. However, the quantum yield of such hot electrons is not sufficient due to the limited thickness of two-dimensional graphene [3-5]. Therefore, it raises the question whether the electron thermalization is efficient enough to generate a large number of hot electrons in graphitic materials as a detectable photocurrent. Here, an experimental demonstration of the sufficient hot electron generation in Bernal stacking sequence nano-graphite films is presented. A comprehensive layer number dependence (1-120-layers graphene) study verifies the strong hot electron scattering correlations, exhibiting intriguing two-dimensional properties into their bulk counterparts. Consequently, the spectral coverage of hot electrons promoted from mid-infrared (4 mu m) to near-infrared (1.2-1.6 mu m) energy level is achieved, leading to a 109 eV-1 cm-2 populated hot electron density for the mid-infrared photodetection. In addition, the consistently increased number of photo-excited electrons via stacking of graphene layers, results in a gradual evolution of subsequent electron thermalization. The proposed scheme for exploring the thickness dependence electron thermalization property of the graphitic material paves the way to design ultrafast and sensitive mid-infrared photodetecters.
引用
收藏
页码:835 / 841
页数:7
相关论文
共 50 条
  • [31] Synthetic Control of Hot-Electron Thermalization Efficiency in Size-Tunable Au-Pt Hybrid Nanoparticles
    Fagan, Abigail M.
    Jeffries, William R.
    Knappenberger, Kenneth L., Jr.
    Schaak, Raymond E.
    ACS NANO, 2021, 15 (01) : 1378 - 1387
  • [32] Layer Number and Stacking Sequence Imaging of Few-Layer Graphene by Transmission Electron Microscopy
    Ping, Jinglei
    Fuhrer, Michael S.
    NANO LETTERS, 2012, 12 (09) : 4635 - 4641
  • [33] Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air
    Son, Seok-Kyun
    Mullan, Ciaran
    Yin, Jun
    Kravets, Vasyl G.
    Kozikov, Aleksey
    Ozdemir, Servet
    Alhazmi, Manal
    Holwill, Matthew
    Watanabe, Kenji
    Taniguchi, Takashi
    Ghazaryan, Davit
    Novoselov, Kostya S.
    Fal'ko, Vladimir I.
    Mishchenko, Artem
    2D MATERIALS, 2018, 5 (01):
  • [34] Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping
    Simoncelli, Sabrina
    Li, Yi
    Cortes, Emiliano
    Maier, Stefan A.
    NANO LETTERS, 2018, 18 (06) : 3400 - 3406
  • [35] Fast electron transfer kinetics on novel interconnected nanospheres of graphene layers electrodes
    Peterlevitz, A. C.
    May, P. W.
    Harniman, R. L.
    Jones, J. A.
    Ceragioli, H. J.
    Zanin, H.
    THIN SOLID FILMS, 2016, 616 : 698 - 702
  • [36] Hot Electron Injection from Graphene Quantum Dots to TiO2
    Williams, Kenrick J.
    Nelson, Cory A.
    Yan, Xin
    Li, Liang-Shi
    Zhu, Xiaoyang
    ACS NANO, 2013, 7 (02) : 1388 - 1394
  • [37] A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout
    W. Miao
    H. Gao
    Z. Wang
    W. Zhang
    Y. Ren
    K. M. Zhou
    S. C. Shi
    C. Yu
    Z. Z. He
    Q. B. Liu
    Z. H. Feng
    Journal of Low Temperature Physics, 2018, 193 : 387 - 392
  • [38] Graphene/Semiconductor Heterostructure Wireless Energy Harvester through Hot Electron Excitation
    Xuan, Yangfan
    Chen, Hong
    Chen, Yan
    Zheng, Haonan
    Lu, Yanghua
    Lin, Shisheng
    RESEARCH, 2020, 2020 (2020)
  • [39] A Graphene-Based Terahertz Hot Electron Bolometer with Johnson Noise Readout
    Miao, W.
    Gao, H.
    Wang, Z.
    Zhang, W.
    Ren, Y.
    Zhou, K. M.
    Shi, S. C.
    Yu, C.
    He, Z. Z.
    Liu, Q. B.
    Feng, Z. H.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2018, 193 (3-4) : 387 - 392
  • [40] Room temperature plasmonic graphene hot electron bolometric photodetectors: A comparative analysis
    Gosciniak, Jacek
    Khurgin, Jacob B.
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (02)