Giant hot electron thermalization via stacking of graphene layers

被引:36
|
作者
Du, Sichao [1 ,2 ]
Xie, Hao [1 ,2 ]
Yin, Juxin [1 ]
Sun, Yunlei [1 ]
Wang, Qiuting [1 ]
Liu, Hong [1 ]
Qi, Wei [1 ]
Cai, Chunfeng [1 ]
Bi, Gang [1 ]
Xiao, Duo [1 ]
Chen, Wenchao [3 ]
Shen, Xiaoyan [4 ]
Yin, Wen-Yan [2 ]
Zheng, Rongkun [5 ]
机构
[1] Zhejiang Univ City Coll, Sch Informat & Elect Engn, Hangzhou 310015, Zhejiang, Peoples R China
[2] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, Univ Illinois Urbana, Zhejiang Univ, Champaign Inst, Zhejiang 314400, Peoples R China
[4] Zhejiang Univ Technol, Coll Sci, Hangzhou 310014, Zhejiang, Peoples R China
[5] Univ Sydney, Australian Inst Nanoscale Sci & Technol, Sch Phys, Sydney, NSW 2006, Australia
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Hot electrons; Transient absorption; Graphene; Mid-infrared; Auger recombination; CARRIER MULTIPLICATION; TRANSIENT ABSORPTION; GENERATION; MICROSCOPY;
D O I
10.1016/j.carbon.2022.12.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The capability of graphene to generate hot electrons is predicted to be effective in converting low energy photons into electrical currents for the mid-infrared photodetection [1,2]. However, the quantum yield of such hot electrons is not sufficient due to the limited thickness of two-dimensional graphene [3-5]. Therefore, it raises the question whether the electron thermalization is efficient enough to generate a large number of hot electrons in graphitic materials as a detectable photocurrent. Here, an experimental demonstration of the sufficient hot electron generation in Bernal stacking sequence nano-graphite films is presented. A comprehensive layer number dependence (1-120-layers graphene) study verifies the strong hot electron scattering correlations, exhibiting intriguing two-dimensional properties into their bulk counterparts. Consequently, the spectral coverage of hot electrons promoted from mid-infrared (4 mu m) to near-infrared (1.2-1.6 mu m) energy level is achieved, leading to a 109 eV-1 cm-2 populated hot electron density for the mid-infrared photodetection. In addition, the consistently increased number of photo-excited electrons via stacking of graphene layers, results in a gradual evolution of subsequent electron thermalization. The proposed scheme for exploring the thickness dependence electron thermalization property of the graphitic material paves the way to design ultrafast and sensitive mid-infrared photodetecters.
引用
收藏
页码:835 / 841
页数:7
相关论文
共 50 条
  • [1] Highly efficient hot electron harvesting from graphene before electron-hole thermalization
    Chen, Yuzhong
    Li, Yujie
    Zhao, Yida
    Zhou, Hongzhi
    Zhu, Haiming
    SCIENCE ADVANCES, 2019, 5 (11):
  • [2] Photoreduced graphene oxide recovers graphene hot electron cooling dynamics
    Bradley, Alden N.
    Thorp, Spencer G.
    Mayonado, Gina
    Coporan, Sergiu A.
    Elliott, Edward
    Graham, Matt W.
    PHYSICAL REVIEW B, 2023, 107 (22)
  • [3] Improving Graphene Diffusion Barriers via Stacking Multiple Layers and Grain Size Engineering
    Roy, Susmit Singha
    Arnold, Michael S.
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (29) : 3638 - 3644
  • [4] A Graphene-Based Hot Electron Transistor
    Vaziri, Sam
    Lupina, Grzegorz
    Henkel, Christoph
    Smith, Anderson D.
    Ostling, Mikael
    Dabrowski, Jarek
    Lippert, Gunther
    Mehr, Wolfgang
    Lemme, Max C.
    NANO LETTERS, 2013, 13 (04) : 1435 - 1439
  • [5] Hot-Electron Dynamics and Thermalization in Small Metallic Nanoparticles
    Saavedra, J. R. M.
    Asenjo-Garcia, Ana
    Javier Garcia de Abajo, F.
    ACS PHOTONICS, 2016, 3 (09): : 1637 - 1646
  • [6] Hot Carrier Thermalization and Josephson Inductance Thermometry in a Graphene-Based Microwave Circuit
    Katti, Raj
    Arora, Harpreet Singh
    Saira, Olli-Pentti
    Watanabe, Kenji
    Taniguchi, Takashi
    Schwab, Keith C.
    Roukes, Michael Lee
    Nadj-Perge, Stevan
    NANO LETTERS, 2023, 23 (10) : 4136 - 4141
  • [7] Simulation Study Of Transmission Electron Microscopy Imaging Of Graphene Stacking
    Nelson, F.
    Diebold, A. C.
    Hull, R.
    FRONTIERS OF CHARACTERIZATION AND METROLOGY FOR NANOELECTRONICS: 2009, 2009, 1173 : 271 - +
  • [8] Going ballistic: Graphene hot electron transistors
    Vaziri, S.
    Smith, A. D.
    Ostling, M.
    Lupina, G.
    Dabrowski, J.
    Lippert, G.
    Mehr, W.
    Driussi, F.
    Venica, S.
    Di Lecce, V.
    Gnudi, A.
    Koenig, M.
    Ruhl, G.
    Belete, M.
    Lemme, M. C.
    SOLID STATE COMMUNICATIONS, 2015, 224 : 64 - 75
  • [9] Optimization of stacking graphene layers as a saturable absorber for mode-locked lasers
    Liu, Chun-Nien
    Huang, Pi-Ling
    Cheng, Wood-Hi
    Yeh, Chao-Yung
    2018 7TH IEEE INTERNATIONAL SYMPOSIUM ON NEXT-GENERATION ELECTRONICS (ISNE), 2018, : 438 - 439
  • [10] Electrochemical interfacial capacitance in multilayer graphene sheets: Dependence on number of stacking layers
    Wang, Da-Wei
    Li, Feng
    Wu, Zhong-Shuai
    Ren, Wencai
    Cheng, Hui-Ming
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (09) : 1729 - 1732