Separators with reactive metal oxide coatings for dendrite-free lithium metal anodes

被引:39
作者
Zu, Chenxi [1 ]
Li, Jiuming [1 ]
Cai, Boran [1 ]
Qiu, Jiliang [1 ]
Zhao, Yan [1 ]
Yang, Qi [1 ]
Li, Hong [1 ,2 ]
Yu, Huigen [1 ]
机构
[1] Beijing WeLion New Energy Technol Co Ltd, Beijing 102402, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
关键词
Lithium dendrite prevention; Reactive metal oxide coating; Fluorinated electrolyte; Lithium metal anode; Lithium-ion batteries; DEPOSITION; MORPHOLOGY; BATTERIES; LIQUID; GROWTH;
D O I
10.1016/j.jpowsour.2022.232336
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal anodes with their high theoretical capacity and low redox potential attract considerable attention, however, practical use of lithium metal batteries is limited by uneven lithium deposition and dendrites forma-tion. Lithium dendrites in the anode side pierce the separator and reach the cathode, leading to short circuit, thermal runaway of the batteries and the associated safety hazards. Herein, we develop separators with reactive metal oxide coatings to alleviate the problem of lithium dendrites formation. It is identified that the reactive metal oxide coatings (e.g., Mg(OH)2@MgO coating) interact with the lithium metal anode and facilitate uniform lithium deposition especially when the coatings are used together with a fluorinated electrolyte. The synergistic effect enables dendrite-free lithium deposition and fast charging capability of lithium metal batteries, which is attributed to the unique lithium metal/separator interface that effectively redistributes Li+ ions. Use of sepa-rators with the reactive metal oxide coatings proves to be a facile strategy to regulate lithium deposition and is a universal method to protect alkali metal anodes in rechargeable batteries. Using reactive separator also revo-lutionizes separator design and manufacturing for alkali metal batteries.
引用
收藏
页数:11
相关论文
共 49 条
[1]  
[Anonymous], 2017, Adv. Mater. Interfaces
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   HISTORICAL DEVELOPMENT OF SECONDARY LITHIUM BATTERIES [J].
BRANDT, K .
SOLID STATE IONICS, 1994, 69 (3-4) :173-183
[4]   Grain-Boundary-Rich Artificial SEI Layer for High-Rate Lithium Metal Anodes [J].
Chen, Chao ;
Liang, Qianwen ;
Wang, Gang ;
Liu, Dongdong ;
Xiong, Xunhui .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (04)
[5]   A "dendrite-eating" separator for high-areal-capacity lithium-metal batteries [J].
Chen, Xiao ;
Zhang, Renyuan ;
Zhao, Ruirui ;
Qi, Xiaoqun ;
Li, Kejia ;
Sun, Quan ;
Ma, Mingyuan ;
Qie, Long ;
Huang, Yunhui .
ENERGY STORAGE MATERIALS, 2020, 31 (31) :181-186
[6]   Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes [J].
Cheng, Xin-Bing ;
Yan, Chong ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Yang, Shu-Ting ;
Zhang, Qiang .
ENERGY STORAGE MATERIALS, 2018, 10 :199-205
[7]   Growth Mechanisms and Suppression Strategies of Lithium Metal Dendrites [J].
Cheng, Xinbing ;
Zhang, Qiang .
PROGRESS IN CHEMISTRY, 2018, 30 (01) :51-72
[8]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456
[9]   Thermal study of low-grade magnesium hydroxide used as fire retardant and in passive fire protection [J].
Formosa, J. ;
Chimenos, J. M. ;
Lacasta, A. M. ;
Haurie, L. .
THERMOCHIMICA ACTA, 2011, 515 (1-2) :43-50
[10]   Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges [J].
Gao, Mingda ;
Li, Hui ;
Xu, Li ;
Xue, Qing ;
Wang, Xinran ;
Bai, Ying ;
Wu, Chuan .
JOURNAL OF ENERGY CHEMISTRY, 2021, 59 :666-687