Analyses of α-nucleus interaction on the 28Si(α, d)30P reaction at 40 and 50 MeV

被引:1
作者
Somadder, A. [1 ]
Das, R. [1 ]
Das, S. K. [1 ]
机构
[1] Shahjalal Univ Sci & Technol, Dept Phys, Sylhet 3114, Bangladesh
关键词
Full finite-range; Distorted-wave Born approximation; Optical model potentials; Spectroscopic factors; OPTICAL-MODEL; MOLECULAR POTENTIALS; PARTICLE SCATTERING; ELASTIC-SCATTERING; DWBA ANALYSIS; SI-28; AL-27(ALPHA; MICHEL; STATES;
D O I
10.1016/j.nuclphysa.2022.122560
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The angular distributions of the 28Si(alpha, d)30P reaction at 40 and 50 MeV incident energies have been analyzed using the full finite-range (FFR) distorted-wave Born approximation (DWBA) method. Three forms of the optical model potentials namely, Woods-Saxon, Michel, and molecular potentials are used to analyze the bound states of the 30P nucleus for 8 and 21 transitions at 40 and 50 MeV, respectively. The two -nucleon spectroscopic factors that have been obtained for the three optical model potentials are compared with the previous experimental and theoretical calculations. The chi 2N values have been calculated for the optical model potentials to estimate the quality of fits for the alpha + 28Si elastic scattering and the 28Si(alpha, d)30P reaction at two different incident energies. These analyses show that the Michel and the molecular potentials describe the elastic scattering data more satisfactorily than the Woods-Saxon potential at 40 and 50 MeV incident energies, but for the reaction analyses at 40 MeV the Woods-Saxon potential takes over the other two forms of potential. These investigations also show that the direct two nucleons transfer reaction mechanism with the angular distributions of the admixture of L transfers in most of the states of 30P is seemingly sufficient for all forms of the optical model potential at these incident energies. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:24
相关论文
共 7 条
  • [1] In-beam γ-ray Spectroscopy of 30P via the 28Si(3He,pγ)30P Reaction
    Mcneice, E.
    Setoodehnia, K.
    Singh, B.
    Abe, Y.
    Binh, D. N.
    Chen, A. A.
    Chen, J.
    Cherubini, S.
    Fukuoka, S.
    Hashimoto, T.
    Hayakawa, T.
    Ishibashi, Y.
    Ito, Y.
    Kahl, D.
    Komatsubara, T.
    Kubono, S.
    Moriguchi, T.
    Nagae, D.
    Nishikiori, R.
    Niwa, T.
    Ozawa, A.
    Shizuma, T.
    Suzuki, H.
    Yamaguchi, H.
    Yuasa, T.
    NUCLEAR DATA SHEETS, 2014, 120 : 88 - 90
  • [2] Thermonuclear reaction rate of 29Si(p, γ)30P
    Downen, L. N.
    Iliadis, C.
    Champagne, A. E.
    Clegg, T. B.
    Coc, A.
    Dermigny, J.
    PHYSICAL REVIEW C, 2022, 105 (05)
  • [3] Analyses of π±-nucleus elastic scattering data at Tπ=40, 30, 20 MeV using a suggested scaling method
    Shehadeh, Z. F.
    El-Shawaf, R. M.
    REVISTA MEXICANA DE FISICA, 2018, 64 (03) : 314 - 325
  • [4] A study of the 30Si(d,p)31Si reaction
    Piskor, S
    Novák, J
    Simecková, E
    Cejpek, J
    Kroha, V
    Dobes, J
    Navrátil, P
    NUCLEAR PHYSICS A, 2000, 662 (1-2) : 112 - 124
  • [5] ASYMPTOTIC NORMALIZATION COEFFICIENTS OF 28Si→ 27Al+ p CONFIGURATIONS FROM THE PROTON TRANSFER REACTION
    Tojiboev, O. R.
    Artemov, S. V.
    Ergashev, F. Kh.
    Karakhodjaev, A. A.
    Ruziev, E. T.
    Ikromkhonov, E. Sh.
    Tursunboyev, I. Z.
    Rusek, K.
    Wolinska-Cichocka, M.
    Burtebayev, N.
    Sakuta, S. B.
    Nassurlla, Maulen
    Nassurlla, Marzhan
    Boztosun, I.
    Hamada, Sh.
    ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2023, 16 (02)
  • [6] Employment of angular tγ-correlation method for investigation of 27Al(αtγ)28Si reactions mechanism at Eα = 30,3 MeV
    Ignatenko, AV
    Lebedev, VM
    Orlova, NV
    Spassky, AV
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 1997, 61 (11): : 2102 - 2110
  • [7] Neutron scattering from 28Si and 32S from 8.0 to 18.9 MeV, dispersive optical model analyses, and ground-state correlations
    Al-Ohali, M. A.
    Delaroche, J. P.
    Howell, C. R.
    Nagadi, M. M.
    Naqvi, A. A.
    Tornow, W.
    Walter, R. L.
    Weisel, G. J.
    PHYSICAL REVIEW C, 2012, 86 (03)