Acquisition super resolution from infrared images using proposed techniques

被引:2
作者
Ashiba, H., I [1 ]
机构
[1] Bilbis Higher Inst Engn, Dept Elect & Elect Commun Engn, SharqiaBilbis, Egypt
关键词
IR images; SR; SKLI; REI; LSI; Neural network; TKLI; SUPERRESOLUTION; INTERPOLATION;
D O I
10.1007/s11042-022-13273-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper suggests three novel proposed techniques for super resolution (SR) infrared (IR) images. The first algorithm is relied on the image acquisition model, which considers benefits of the sparse representations of low resolution (LR) and high resolution (HR) patches using Bi-cubic interpolation and minimum mean square error (MMSE) estimation. This estimation in HR image prediction stage providing a scheme can be interpreted as a feed forward neural network. The second scheme is based on up-sampling for IR images using Second Kernel Lanczos Interpolation (SKLI).The third scheme is depended on up-sampling for IR images using Third Kernel Lanczos Interpolation (TKLI).This technique is typically used to increase the sampling rate of a digital signal, or to shift it by a fraction of the sampling interval. The performance metrics are Peak Signal-To-Noise Ratio (PSNR) and computation time. Simulation results prove that the success of three presented techniques in acquisition high resolution of SR IR images. By comparing the three presented algorithms with Regularized Interpolation (REI) and least squares Interpolation (LSI) schemes of IR images. It is clear that the second suggested technique gives superior than REI and LSI schemes from point views PSNR and computation time. On the other hand the third presented technique is the best algorithms from point views PSNR and computation time to other techniques.
引用
收藏
页码:2329 / 2348
页数:20
相关论文
共 35 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
[Anonymous], 2006, J BRAZ COMPUT SOC, DOI DOI 10.1590/S0104-65002006000100006
[3]   Feature enhancement angiographic images in medical diagnosis [J].
Ashiba, H., I .
MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (29-30) :21539-21556
[4]   Cepstrum adaptive plateau histogram for dark IR night vision images enhancement [J].
Ashiba, H., I .
MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (3-4) :2543-2554
[5]   Enhancement of IR images using histogram processing and the Undecimated additive wavelet transform [J].
Ashiba, H. I. ;
Mansour, H. M. ;
Ahmed, H. M. ;
Dessouky, M. I. ;
El-Kordy, M. F. ;
Zahran, O. ;
Abd El-Samie, Fathi E. .
MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (09) :11277-11290
[6]   Enhancement of Infrared Images Based on Efficient Histogram Processing [J].
Ashiba, H. I. ;
Mansour, H. M. ;
Ahmed, H. M. ;
El-Kordy, M. F. ;
Dessouky, M. I. ;
Abd El-Samie, Fathi E. .
WIRELESS PERSONAL COMMUNICATIONS, 2018, 99 (02) :619-636
[7]   Adaptive Least Squares Interpolation of Infrared Images [J].
Ashiba, H. I. ;
Awadalla, K. H. ;
El-Halfawy, S. M. ;
Abd El-Samie, F. E. .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2011, 30 (03) :543-551
[8]   An efficient proposed framework for infrared night vision imaging system [J].
Ashiba, M., I ;
Ashiba, H., I ;
Tolba, M. S. ;
El-Fishawy, A. S. ;
Abd El-Samie, F. E. .
MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (31-32) :23111-23146
[9]   Adaptive regularization-based super resolution reconstruction technique for multi-focus low-resolution images [J].
Bahy, Ramy M. ;
Salama, Gouda I. ;
Mahmoud, Tarek A. .
SIGNAL PROCESSING, 2014, 103 :155-167
[10]  
Chen T, 2001, INT CONF ACOUST SPEE, P1857, DOI 10.1109/ICASSP.2001.941305