Operando Mobile Catalysis for Reverse Water Gas Shift Reaction

被引:7
|
作者
Liang, Haojie [1 ,2 ,3 ]
Zhang, Bin [1 ,2 ]
Hong, Mei [1 ,2 ]
Yang, Xinchun [1 ,2 ]
Zhu, Ling [1 ,2 ]
Liu, Xingchen [1 ]
Qi, Yuntao [1 ,2 ]
Zhao, Shichao [1 ]
Wang, Guofu [1 ]
van Bavel, Alexander P. [4 ]
Wen, Xiaodong [1 ]
Qin, Yong [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Taiyuan Univ Technol, Key Lab Interface Sci Engn Adv Mat, Minist Educ, Taiyuan 030024, Peoples R China
[4] Shell Global Solut Int BV, NL-1031 Amsterdam, Netherlands
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Mobile catalysis; RWGS; mobile Pt species; collision probability; carbonate; CO2; HYDROGENATION; ACTIVE-SITES; PLATINUM; CERIA; IDENTIFICATION; MECHANISM; EVOLUTION; KINETICS; METHANOL; DRIFTS;
D O I
10.1002/anie.202318747
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal atoms on the support serve as active sites for many heterogeneous catalysts. However, the active metal sites on the support are conventionally described as static, and the intermediates adsorbed on the support far away from the active metal sites cannot be transformed. Herein, we report the first example of operando mobile catalysis to promote catalytic efficiency by enhancing the collision probability between active sites and reactants or reaction intermediates. Specifically, ligand-coordinated Pt single atoms (isolated MeCpPt- species) are bonded on CeO2 and transformed into mobile MeCpPt(H)CO complexes during the reverse water gas shift reaction for operando mobile catalysis. This strategy enables the conversion of inert carbonate intermediates on the CeO2 support. A turnover frequency (TOF) of 6358 mol CO2 molPt-1 & sdot; h-1 and 99 % CO selectivity at 300 degrees C is obtained for reverse water gas shift reaction, dramatically higher than those of Pt catalysts reported in the literature. Operando mobile catalysis presents a promising strategy for designing high-efficiency heterogeneous catalysts for various chemical reactions and applications. Operando mobile catalysis enables the formation of mobile metal species during the reaction and enhances the catalytic efficiency by increasing the collision probability with the intermediates. image
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Unravelling the Role of Oxygen Vacancies in the Mechanism of the Reverse Water-Gas Shift Reaction by Operando DRIFTS and Ultraviolet-Visible Spectroscopy
    Bobadilla, Luis F.
    Santos, Jose L.
    Ivanova, Svetlana
    Odriozola, Jose A.
    Urakawa, Atsushi
    ACS CATALYSIS, 2018, 8 (08): : 7455 - 7467
  • [2] Identifying Commercial Opportunities for the Reverse Water Gas Shift Reaction
    Bown, R. Matthew
    Joyce, Miriam
    Zhang, Qi
    Reina, Tomas Ramirez
    Duyar, Melis S.
    ENERGY TECHNOLOGY, 2021, 9 (11)
  • [3] Light-Assisted Catalysis and the Dynamic Nature of Surface Species in the Reverse Water Gas Shift Reaction over Cu/γ-Al2O3
    Lorber, Kristijan
    Arcon, Iztok
    Hus, Matej
    Zavasnik, Janez
    Sancho-Parramon, Jordi
    Prasnikar, Anze
    Likozar, Blaz
    Novak Tusar, Natasa
    Djinovic, Petar
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (49) : 67778 - 67790
  • [4] MXene termination and stacking bias on the reverse water gas shift reaction catalysis
    Morales-García, Ángel
    Gouveia, José D.
    López, Anna Vidal
    Comas-Vives, Aleix
    Viñes, Francesc
    Gomes, José R.B.
    Illas, Francesc
    Materials Today Catalysis, 2024, 7
  • [5] Promoting role of potassium in the reverse water gas shift reaction on Pt/mullite catalyst
    Liang, Binglian
    Duan, Hongmin
    Su, Xiong
    Chen, Xiaodong
    Huang, Yanqiang
    Chen, Xiaowei
    Jose Delgado, Juan
    Zhang, Tao
    CATALYSIS TODAY, 2017, 281 : 319 - 326
  • [6] Dynamic Phase Transition of Iron Oxycarbide Facilitated by Pt Nanoparticles for Promoting the Reverse Water Gas Shift Reaction
    Chen, Hanming
    Zhao, Zhiying
    Wang, Genyuan
    Zheng, Zhiping
    Chen, Jiayu
    Kuang, Qin
    Xie, Zhaoxiong
    ACS CATALYSIS, 2021, 11 (23): : 14586 - 14595
  • [7] Influence of oxygen vacancies of CeO2 on reverse water gas shift reaction
    Cao, Fangxian
    Xiao, Yongshan
    Zhang, Zhanming
    Li, Jing
    Xia, Zhaoming
    Hu, Xun
    Ma, Yuanyuan
    Qu, Yongquan
    JOURNAL OF CATALYSIS, 2022, 414 : 25 - 32
  • [8] Photothermal Approach on Chemical Looping Method for Reverse Water Gas Shift Reaction Using Defective Molybdenum Oxide
    Takami, Daichi
    Kishimura, Taku
    Kuwahara, Yasutaka
    Yamashita, Hiromi
    ACS ES&T ENGINEERING, 2025,
  • [9] Electrochemical promotion of copper nanoparticles for the reverse water gas shift reaction
    Wang, Ju
    Couillard, Martin
    Baranova, Elena A.
    CATALYSIS SCIENCE & TECHNOLOGY, 2022, 12 (05) : 1562 - 1573
  • [10] Catalytic manganese oxide nanostructures for the reverse water gas shift reaction
    He, Yulian
    Yang, Ke R.
    Yu, Ziwei
    Fishman, Zachary S.
    Achola, Laura A.
    Tobin, Zachary M.
    Heinlein, Jake A.
    Hu, Shu
    Suib, Steven L.
    Batista, Victor S.
    Pfefferle, Lisa D.
    NANOSCALE, 2019, 11 (35) : 16677 - 16688