共 31 条
Monitoring weld penetration of laser-arc hybrid welding joints without full-penetration requirement based on deep learning
被引:9
作者:

Li, Chaonan
论文数: 0 引用数: 0
h-index: 0
机构:
Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Peoples R China Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Peoples R China

Chen, Hui
论文数: 0 引用数: 0
h-index: 0
机构:
Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Peoples R China Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Peoples R China

Xiong, Jun
论文数: 0 引用数: 0
h-index: 0
机构:
Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Peoples R China Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Peoples R China
机构:
[1] Southwest Jiaotong Univ, Sch Mat Sci & Engn, Key Lab Adv Technol Mat, Minist Educ, Chengdu 610031, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Laser-arc hybrid welding;
Weld penetration;
In-situ monitoring;
Deep learning;
Classification model;
Regression model;
D O I:
10.1016/j.optlastec.2023.110538
中图分类号:
O43 [光学];
学科分类号:
070207 ;
0803 ;
摘要:
In-situ monitoring weld penetration of laser-arc hybrid welding (LAHW) joints without full-penetration requirement is challenging since no back reinforcement occurs. The novelty of this study is to develop convolutional neural network (CNN) models for real-time monitoring of weld penetration in LAHW based on front weld pool images. A dataset, including front weld pool images and corresponding weld penetration labels determined by weld cross-sections, is established by conducting weld tests under different laser powers. CNN classification models, i.e., AlexNet, ResNet18, and ResNet50, are trained and validated by the dataset. The ResNet18 model can classify four weld penetration states with the highest accuracy, achieving 99%. Then, a regression model is constructed to predict the weld penetration depth via the ResNet18 model parameters. The comparison between predicted and actual penetration depths indicates that 98.8% of the errors are less than 0.5 mm, and 61.43% are less than 0.1 mm.
引用
收藏
页数:10
相关论文
共 31 条
- [11] Research on weld formation mechanism of laser-MIG arc hybrid welding with butt gap[J]. OPTICS AND LASER TECHNOLOGY, 2021, 133Huang, Hanxuan论文数: 0 引用数: 0 h-index: 0机构: Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R China Shanghai Collaborat Innovat Ctr Laser Adv Mfg Tec, Shanghai 201620, Peoples R China Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R ChinaZhang, Peilei论文数: 0 引用数: 0 h-index: 0机构: Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R China Shanghai Collaborat Innovat Ctr Laser Adv Mfg Tec, Shanghai 201620, Peoples R China Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R ChinaYan, Hua论文数: 0 引用数: 0 h-index: 0机构: Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R China Shanghai Collaborat Innovat Ctr Laser Adv Mfg Tec, Shanghai 201620, Peoples R China Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R ChinaLiu, Zhengjun论文数: 0 引用数: 0 h-index: 0机构: Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R China Shanghai Collaborat Innovat Ctr Laser Adv Mfg Tec, Shanghai 201620, Peoples R China Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R ChinaYu, Zhishui论文数: 0 引用数: 0 h-index: 0机构: Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R China Shanghai Collaborat Innovat Ctr Laser Adv Mfg Tec, Shanghai 201620, Peoples R China Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R ChinaWu, Di论文数: 0 引用数: 0 h-index: 0机构: Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R China Shanghai Collaborat Innovat Ctr Laser Adv Mfg Tec, Shanghai 201620, Peoples R China Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R ChinaShi, Haichuan论文数: 0 引用数: 0 h-index: 0机构: Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R China Shanghai Collaborat Innovat Ctr Laser Adv Mfg Tec, Shanghai 201620, Peoples R China Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R ChinaTian, Yingtao论文数: 0 引用数: 0 h-index: 0机构: Univ Lancaster, Dept Engn, Lancaster LA1 4YW, England Shanghai Univ Engn Sci, Sch Mat Engn, Shanghai 201620, Peoples R China
- [12] End-to-end prediction of weld penetration: A deep learning and transfer learning based method[J]. JOURNAL OF MANUFACTURING PROCESSES, 2021, 63 : 191 - 197Jiao, Wenhua论文数: 0 引用数: 0 h-index: 0机构: Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA Univ Kentucky, Inst Sustainable Mfg, Lexington, KY 40506 USA Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USAWang, Qiyue论文数: 0 引用数: 0 h-index: 0机构: Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA Univ Kentucky, Inst Sustainable Mfg, Lexington, KY 40506 USA Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USACheng, Yongchao论文数: 0 引用数: 0 h-index: 0机构: Univ Kentucky, Inst Sustainable Mfg, Lexington, KY 40506 USA Beijing Univ Technol, Welding Res Inst, Minist Educ, Beijing 100124, Peoples R China Beijing Univ Technol, Engn Res Ctr Adv Mfg Technol Automot Components, Minist Educ, Beijing 100124, Peoples R China Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USAZhang, YuMing论文数: 0 引用数: 0 h-index: 0机构: Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA Univ Kentucky, Inst Sustainable Mfg, Lexington, KY 40506 USA Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA
- [13] ImageNet Classification with Deep Convolutional Neural Networks[J]. COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90Krizhevsky, Alex论文数: 0 引用数: 0 h-index: 0机构: Google Inc, Mountain View, CA 94043 USA Google Inc, Mountain View, CA 94043 USASutskever, Ilya论文数: 0 引用数: 0 h-index: 0机构: OpenAI, San Francisco, CA USA Google Inc, Mountain View, CA 94043 USAHinton, Geoffrey E.论文数: 0 引用数: 0 h-index: 0机构: Google Inc, Mountain View, CA 94043 USA Google Inc, Mountain View, CA 94043 USA
- [14] Comprehensive model of thermal phenomena and phase transformations in laser welding process[J]. COMPUTERS & STRUCTURES, 2016, 172 : 29 - 39Kubiak, M.论文数: 0 引用数: 0 h-index: 0机构: Czestochowa Tech Univ, Inst Mech & Machine Design Fdn, Dabrowskiego 73, PL-42201 Czestochowa, Poland Czestochowa Tech Univ, Inst Mech & Machine Design Fdn, Dabrowskiego 73, PL-42201 Czestochowa, Poland论文数: 引用数: h-index:机构:
- [15] A Framework Integrating DeeplabV3+, Transfer Learning, Active Learning, and Incremental Learning for Mapping Building Footprints[J]. REMOTE SENSING, 2022, 14 (19)Li, Zhichao论文数: 0 引用数: 0 h-index: 0机构: Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Land Surface Pattern & Simulat, Beijing 100101, Peoples R China Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Land Surface Pattern & Simulat, Beijing 100101, Peoples R ChinaDong, Jinwei论文数: 0 引用数: 0 h-index: 0机构: Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Land Surface Pattern & Simulat, Beijing 100101, Peoples R China Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Land Surface Pattern & Simulat, Beijing 100101, Peoples R China
- [16] Machine learning of weld joint penetration from weld pool surface using support vector regression[J]. JOURNAL OF MANUFACTURING PROCESSES, 2019, 41 : 23 - 28Liang, Rong论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, State Key Lab Ocean Engn, Shanghai, Peoples R China Univ Kentucky, Dept Elect & Comp Engn, Inst Sustainable Mfg, Lexington, KY 40506 USA Shanghai Jiao Tong Univ, Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, State Key Lab Ocean Engn, Shanghai, Peoples R ChinaYu, Rui论文数: 0 引用数: 0 h-index: 0机构: Univ Kentucky, Dept Elect & Comp Engn, Inst Sustainable Mfg, Lexington, KY 40506 USA Shanghai Jiao Tong Univ, Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, State Key Lab Ocean Engn, Shanghai, Peoples R ChinaLuo, Yu论文数: 0 引用数: 0 h-index: 0机构: Shanghai Jiao Tong Univ, Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, State Key Lab Ocean Engn, Shanghai, Peoples R China Shanghai Jiao Tong Univ, Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, State Key Lab Ocean Engn, Shanghai, Peoples R ChinaZhang, YuMing论文数: 0 引用数: 0 h-index: 0机构: Univ Kentucky, Dept Elect & Comp Engn, Inst Sustainable Mfg, Lexington, KY 40506 USA Shanghai Jiao Tong Univ, Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, State Key Lab Ocean Engn, Shanghai, Peoples R China
- [17] Deep learning-based welding image recognition: A comprehensive review[J]. JOURNAL OF MANUFACTURING SYSTEMS, 2023, 68 : 601 - 625Liu, Tianyuan论文数: 0 引用数: 0 h-index: 0机构: Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong 999077, Peoples R China Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong 999077, Peoples R ChinaZheng, Pai论文数: 0 引用数: 0 h-index: 0机构: Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong 999077, Peoples R China Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong 999077, Peoples R ChinaBao, Jinsong论文数: 0 引用数: 0 h-index: 0机构: Donghua Univ, Coll Mech Engn, Shanghai 201620, Peoples R China Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong 999077, Peoples R China
- [18] Characteristics of laser-offset-TIG hybrid welding of AZ31Mg alloy with 6061Al alloy via Zn filler[J]. OPTICS AND LASER TECHNOLOGY, 2022, 152Lv, Xinze论文数: 0 引用数: 0 h-index: 0机构: Dalian Univ Technol, Key Lab Liaoning Adv Welding & Joining Technol, Sch Mat Sci & Engn, Dalian 116024, Peoples R China Dalian Univ Technol, Key Lab Liaoning Adv Welding & Joining Technol, Sch Mat Sci & Engn, Dalian 116024, Peoples R ChinaLiu, Liming论文数: 0 引用数: 0 h-index: 0机构: Dalian Univ Technol, Key Lab Liaoning Adv Welding & Joining Technol, Sch Mat Sci & Engn, Dalian 116024, Peoples R China Dalian Univ Technol, Key Lab Liaoning Adv Welding & Joining Technol, Sch Mat Sci & Engn, Dalian 116024, Peoples R China
- [19] Microstructures and properties of single-pass laser-arc hybrid welded stainless clad steel plate[J]. JOURNAL OF MANUFACTURING PROCESSES, 2018, 36 : 293 - 300Meng, Yunfei论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R ChinaKang, Kai论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R ChinaGao, Ming论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R ChinaZeng, Xiaoyan论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
- [20] Plasma diagnostics using optical emission spectroscopy in laser drilling process[J]. JOURNAL OF LASER APPLICATIONS, 2016, 28 (02)Shin, Joonghan论文数: 0 引用数: 0 h-index: 0机构: Univ Michigan, Ctr Lasers & Plasmas Adv Mfg, Ann Arbor, MI 48109 USA Univ Michigan, Ctr Lasers & Plasmas Adv Mfg, Ann Arbor, MI 48109 USAMazumder, J.论文数: 0 引用数: 0 h-index: 0机构: Univ Michigan, Ctr Lasers & Plasmas Adv Mfg, Ann Arbor, MI 48109 USA Univ Michigan, Ctr Lasers & Plasmas Adv Mfg, Ann Arbor, MI 48109 USA