Depth alignment interaction network for camouflaged object detection

被引:8
作者
Bi, Hongbo [1 ,3 ,4 ]
Tong, Yuyu [3 ]
Zhang, Jiayuan [3 ]
Zhang, Cong [3 ]
Tong, Jinghui [3 ]
Jin, Wei [2 ]
机构
[1] Northeast Petr Univ, Sanya Offshore Oil & Gas Res Inst, Daqing 163319, Peoples R China
[2] Natl Univ Def Technol, Coll Elect Countermeasures, Hefei 230037, Peoples R China
[3] Northeast Petr Univ, Sch Elect Informat Engn, Daqing 163319, Peoples R China
[4] Guizhou Univ, State Key Lab Publ Big Data, Guiyang 550025, Peoples R China
关键词
Camouflaged object detection; Depth alignment index; Expanded pyramid interaction; Deep learning; FEATURES;
D O I
10.1007/s00530-023-01250-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many animals actively change their own characteristics, such as color and texture, through camouflage, a natural defense mechanism, making them difficult to be detected in the natural environment, which makes the task of camouflaged object detection extremely challenging. Biological research shows that the eyes of animals have three-dimensional perception ability, and the obtained depth information can provide useful object positioning clues for finding camouflaged objects. However, almost all the current studies for camouflaged object detection do not combine depth maps with RGB images. Therefore, combining depth maps with traditional unimodal RGB images is of great research significance to improve the accuracy of camouflaged object detection. In this paper, we propose a depth alignment interaction network for camouflaged object detection in which the depth maps used are generated from existing monocular depth estimation networks. To address the problem that the quality of the generated depth maps varies, we propose a depth alignment index method to evaluate the quality of the depth maps. The method dynamically assigns the proportion of depth maps in the fusion process to depth maps of different quality according to their alignment with RGB images. Then, to fully extract the fused artifact features, we design an expanded pyramid interaction module, which first expands the receptive field of the features in each layer. Then, the features at the higher levels interacted with the features at the lower levels by connecting them step-by-step to further refine the predicted camouflaged area. Extensive experiments on 4 camouflaged object detection datasets demonstrate the effectiveness of our solution for camouflaged object detection.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] FSNet: Focus Scanning Network for Camouflaged Object Detection
    Song, Ze
    Kang, Xudong
    Wei, Xiaohui
    Liu, Haibo
    Dian, Renwei
    Li, Shutao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 2267 - 2278
  • [22] Boundary enhancement and refinement network for camouflaged object detection
    Xia, Chenxing
    Cao, Huizhen
    Gao, Xiuju
    Ge, Bin
    Li, Kuan-Ching
    Fang, Xianjin
    Zhang, Yan
    Liang, Xingzhu
    MACHINE VISION AND APPLICATIONS, 2024, 35 (05)
  • [23] Feature Aggregation and Propagation Network for Camouflaged Object Detection
    Zhou, Tao
    Zhou, Yi
    Gong, Chen
    Yang, Jian
    Zhang, Yu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 7036 - 7047
  • [24] Camouflaged Object Detection with a Feature Lateral Connection Network
    Wang, Tao
    Wang, Jian
    Wang, Ruihao
    ELECTRONICS, 2023, 12 (12)
  • [25] Features Split and Aggregation Network for Camouflaged Object Detection
    Zhang, Zejin
    Wang, Tao
    Wang, Jian
    Sun, Yao
    JOURNAL OF IMAGING, 2024, 10 (01)
  • [26] Dynamic interactive refinement network for camouflaged object detection
    Yaoqi Sun
    Lidong Ma
    Peiyao Shou
    Hongfa Wen
    YuHan Gao
    Yixiu Liu
    Chenggang Yan
    Haibing Yin
    Neural Computing and Applications, 2024, 36 : 3433 - 3446
  • [27] Dynamic interactive refinement network for camouflaged object detection
    Sun, Yaoqi
    Ma, Lidong
    Shou, Peiyao
    Wen, Hongfa
    Gao, Yuhan
    Liu, Yixiu
    Yan, Chenggang
    Yin, Haibing
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (07) : 3433 - 3446
  • [28] Dynamic adaptive scaling network for camouflaged object detection
    Wang, Lili
    Ruan, Kang
    Yan, Pu
    Zhao, Yang
    Wang, Xu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [29] CFANet: A Cross-layer Feature Aggregation Network for Camouflaged Object Detection
    Zhang, Qing
    Yan, Weiqi
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2441 - 2446
  • [30] Semantic-spatial guided context propagation network for camouflaged object detection
    Ren, Junchao
    Zhang, Qiao
    Kang, Bingbing
    Zhong, Yuxi
    He, Min
    Ge, Yanliang
    Bi, Hongbo
    APPLIED INTELLIGENCE, 2025, 55 (05)